# Copyright 2020 The Matrix.org Foundation C.I.C.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Iterable, List, Sequence

from synapse.util.iterutils import chunk_seq, sorted_topologically

from tests.unittest import TestCase


class ChunkSeqTests(TestCase):
    def test_short_seq(self) -> None:
        parts = chunk_seq("123", 8)

        self.assertEqual(
            list(parts),
            ["123"],
        )

    def test_long_seq(self) -> None:
        parts = chunk_seq("abcdefghijklmnop", 8)

        self.assertEqual(
            list(parts),
            ["abcdefgh", "ijklmnop"],
        )

    def test_uneven_parts(self) -> None:
        parts = chunk_seq("abcdefghijklmnop", 5)

        self.assertEqual(
            list(parts),
            ["abcde", "fghij", "klmno", "p"],
        )

    def test_empty_input(self) -> None:
        parts: Iterable[Sequence] = chunk_seq([], 5)

        self.assertEqual(
            list(parts),
            [],
        )


class SortTopologically(TestCase):
    def test_empty(self) -> None:
        "Test that an empty graph works correctly"

        graph: Dict[int, List[int]] = {}
        self.assertEqual(list(sorted_topologically([], graph)), [])

    def test_handle_empty_graph(self) -> None:
        "Test that a graph where a node doesn't have an entry is treated as empty"

        graph: Dict[int, List[int]] = {}

        # For disconnected nodes the output is simply sorted.
        self.assertEqual(list(sorted_topologically([1, 2], graph)), [1, 2])

    def test_disconnected(self) -> None:
        "Test that a graph with no edges work"

        graph: Dict[int, List[int]] = {1: [], 2: []}

        # For disconnected nodes the output is simply sorted.
        self.assertEqual(list(sorted_topologically([1, 2], graph)), [1, 2])

    def test_linear(self) -> None:
        "Test that a simple `4 -> 3 -> 2 -> 1` graph works"

        graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3]}

        self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])

    def test_subset(self) -> None:
        "Test that only sorting a subset of the graph works"
        graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3]}

        self.assertEqual(list(sorted_topologically([4, 3], graph)), [3, 4])

    def test_fork(self) -> None:
        "Test that a forked graph works"
        graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [1], 4: [2, 3]}

        # Valid orderings are `[1, 3, 2, 4]` or `[1, 2, 3, 4]`, but we should
        # always get the same one.
        self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])

    def test_duplicates(self) -> None:
        "Test that a graph with duplicate edges work"
        graph: Dict[int, List[int]] = {1: [], 2: [1, 1], 3: [2, 2], 4: [3]}

        self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])

    def test_multiple_paths(self) -> None:
        "Test that a graph with multiple paths between two nodes work"
        graph: Dict[int, List[int]] = {1: [], 2: [1], 3: [2], 4: [3, 2, 1]}

        self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])