mirror of
https://github.com/nextcloud/desktop.git
synced 2024-11-26 23:28:14 +03:00
Add c_jhash.h header from csync to 3rdparty.
This commit is contained in:
parent
21cd57228e
commit
59bf8740a0
2 changed files with 246 additions and 0 deletions
245
src/3rdparty/csync/c_jhash.h
vendored
Normal file
245
src/3rdparty/csync/c_jhash.h
vendored
Normal file
|
@ -0,0 +1,245 @@
|
||||||
|
/*
|
||||||
|
* c_jhash.c Jenkins Hash
|
||||||
|
*
|
||||||
|
* Copyright (c) 1997 Bob Jenkins <bob_jenkins@burtleburtle.net>
|
||||||
|
*
|
||||||
|
* lookup8.c, by Bob Jenkins, January 4 1997, Public Domain.
|
||||||
|
* hash(), hash2(), hash3, and _c_mix() are externally useful functions.
|
||||||
|
* Routines to test the hash are included if SELF_TEST is defined.
|
||||||
|
* You can use this free for any purpose. It has no warranty.
|
||||||
|
*
|
||||||
|
* See http://burtleburtle.net/bob/hash/evahash.html
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file c_jhash.h
|
||||||
|
*
|
||||||
|
* @brief Interface of the cynapses jhash implementation
|
||||||
|
*
|
||||||
|
* @defgroup cynJHashInternals cynapses libc jhash function
|
||||||
|
* @ingroup cynLibraryAPI
|
||||||
|
*
|
||||||
|
* @{
|
||||||
|
*/
|
||||||
|
#ifndef _C_JHASH_H
|
||||||
|
#define _C_JHASH_H
|
||||||
|
|
||||||
|
#include <stdint.h>
|
||||||
|
|
||||||
|
#define c_hashsize(n) ((uint8_t) 1 << (n))
|
||||||
|
#define c_hashmask(n) (xhashsize(n) - 1)
|
||||||
|
|
||||||
|
/**
|
||||||
|
* _c_mix -- Mix 3 32-bit values reversibly.
|
||||||
|
*
|
||||||
|
* For every delta with one or two bit set, and the deltas of all three
|
||||||
|
* high bits or all three low bits, whether the original value of a,b,c
|
||||||
|
* is almost all zero or is uniformly distributed,
|
||||||
|
* If _c_mix() is run forward or backward, at least 32 bits in a,b,c
|
||||||
|
* have at least 1/4 probability of changing.
|
||||||
|
* If _c_mix() is run forward, every bit of c will change between 1/3 and
|
||||||
|
* 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
|
||||||
|
* _c_mix() was built out of 36 single-cycle latency instructions in a
|
||||||
|
* structure that could supported 2x parallelism, like so:
|
||||||
|
* a -= b;
|
||||||
|
* a -= c; x = (c>>13);
|
||||||
|
* b -= c; a ^= x;
|
||||||
|
* b -= a; x = (a<<8);
|
||||||
|
* c -= a; b ^= x;
|
||||||
|
* c -= b; x = (b>>13);
|
||||||
|
* ...
|
||||||
|
*
|
||||||
|
* Unfortunately, superscalar Pentiums and Sparcs can't take advantage
|
||||||
|
* of that parallelism. They've also turned some of those single-cycle
|
||||||
|
* latency instructions into multi-cycle latency instructions. Still,
|
||||||
|
* this is the fastest good hash I could find. There were about 2^^68
|
||||||
|
* to choose from. I only looked at a billion or so.
|
||||||
|
*/
|
||||||
|
#define _c_mix(a,b,c) \
|
||||||
|
{ \
|
||||||
|
a -= b; a -= c; a ^= (c>>13); \
|
||||||
|
b -= c; b -= a; b ^= (a<<8); \
|
||||||
|
c -= a; c -= b; c ^= (b>>13); \
|
||||||
|
a -= b; a -= c; a ^= (c>>12); \
|
||||||
|
b -= c; b -= a; b ^= (a<<16); \
|
||||||
|
c -= a; c -= b; c ^= (b>>5); \
|
||||||
|
a -= b; a -= c; a ^= (c>>3); \
|
||||||
|
b -= c; b -= a; b ^= (a<<10); \
|
||||||
|
c -= a; c -= b; c ^= (b>>15); \
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* _c_mix64 -- Mix 3 64-bit values reversibly.
|
||||||
|
*
|
||||||
|
* _c_mix64() takes 48 machine instructions, but only 24 cycles on a superscalar
|
||||||
|
* machine (like Intel's new MMX architecture). It requires 4 64-bit
|
||||||
|
* registers for 4::2 parallelism.
|
||||||
|
* All 1-bit deltas, all 2-bit deltas, all deltas composed of top bits of
|
||||||
|
* (a,b,c), and all deltas of bottom bits were tested. All deltas were
|
||||||
|
* tested both on random keys and on keys that were nearly all zero.
|
||||||
|
* These deltas all cause every bit of c to change between 1/3 and 2/3
|
||||||
|
* of the time (well, only 113/400 to 287/400 of the time for some
|
||||||
|
* 2-bit delta). These deltas all cause at least 80 bits to change
|
||||||
|
* among (a,b,c) when the _c_mix is run either forward or backward (yes it
|
||||||
|
* is reversible).
|
||||||
|
* This implies that a hash using _c_mix64 has no funnels. There may be
|
||||||
|
* characteristics with 3-bit deltas or bigger, I didn't test for
|
||||||
|
* those.
|
||||||
|
*/
|
||||||
|
#define _c_mix64(a,b,c) \
|
||||||
|
{ \
|
||||||
|
a -= b; a -= c; a ^= (c>>43); \
|
||||||
|
b -= c; b -= a; b ^= (a<<9); \
|
||||||
|
c -= a; c -= b; c ^= (b>>8); \
|
||||||
|
a -= b; a -= c; a ^= (c>>38); \
|
||||||
|
b -= c; b -= a; b ^= (a<<23); \
|
||||||
|
c -= a; c -= b; c ^= (b>>5); \
|
||||||
|
a -= b; a -= c; a ^= (c>>35); \
|
||||||
|
b -= c; b -= a; b ^= (a<<49); \
|
||||||
|
c -= a; c -= b; c ^= (b>>11); \
|
||||||
|
a -= b; a -= c; a ^= (c>>12); \
|
||||||
|
b -= c; b -= a; b ^= (a<<18); \
|
||||||
|
c -= a; c -= b; c ^= (b>>22); \
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief hash a variable-length key into a 32-bit value
|
||||||
|
*
|
||||||
|
* The best hash table sizes are powers of 2. There is no need to do
|
||||||
|
* mod a prime (mod is sooo slow!). If you need less than 32 bits,
|
||||||
|
* use a bitmask. For example, if you need only 10 bits, do
|
||||||
|
* h = (h & hashmask(10));
|
||||||
|
* In which case, the hash table should have hashsize(10) elements.
|
||||||
|
*
|
||||||
|
* Use for hash table lookup, or anything where one collision in 2^32 is
|
||||||
|
* acceptable. Do NOT use for cryptographic purposes.
|
||||||
|
*
|
||||||
|
* @param k The key (the unaligned variable-length array of bytes).
|
||||||
|
*
|
||||||
|
* @param length The length of the key, counting by bytes.
|
||||||
|
*
|
||||||
|
* @param initval Initial value, can be any 4-byte value.
|
||||||
|
*
|
||||||
|
* @return Returns a 32-bit value. Every bit of the key affects every bit
|
||||||
|
* of the return value. Every 1-bit and 2-bit delta achieves
|
||||||
|
* avalanche. About 36+6len instructions.
|
||||||
|
*/
|
||||||
|
static inline uint32_t c_jhash(const uint8_t *k, uint32_t length, uint32_t initval) {
|
||||||
|
uint32_t a,b,c,len;
|
||||||
|
|
||||||
|
/* Set up the internal state */
|
||||||
|
len = length;
|
||||||
|
a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
|
||||||
|
c = initval; /* the previous hash value */
|
||||||
|
|
||||||
|
while (len >= 12) {
|
||||||
|
a += (k[0] +((uint32_t)k[1]<<8) +((uint32_t)k[2]<<16) +((uint32_t)k[3]<<24));
|
||||||
|
b += (k[4] +((uint32_t)k[5]<<8) +((uint32_t)k[6]<<16) +((uint32_t)k[7]<<24));
|
||||||
|
c += (k[8] +((uint32_t)k[9]<<8) +((uint32_t)k[10]<<16)+((uint32_t)k[11]<<24));
|
||||||
|
_c_mix(a,b,c);
|
||||||
|
k += 12; len -= 12;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* handle the last 11 bytes */
|
||||||
|
c += length;
|
||||||
|
/* all the case statements fall through */
|
||||||
|
switch(len) {
|
||||||
|
case 11: c+=((uint32_t)k[10]<<24);
|
||||||
|
case 10: c+=((uint32_t)k[9]<<16);
|
||||||
|
case 9 : c+=((uint32_t)k[8]<<8);
|
||||||
|
/* the first byte of c is reserved for the length */
|
||||||
|
case 8 : b+=((uint32_t)k[7]<<24);
|
||||||
|
case 7 : b+=((uint32_t)k[6]<<16);
|
||||||
|
case 6 : b+=((uint32_t)k[5]<<8);
|
||||||
|
case 5 : b+=k[4];
|
||||||
|
case 4 : a+=((uint32_t)k[3]<<24);
|
||||||
|
case 3 : a+=((uint32_t)k[2]<<16);
|
||||||
|
case 2 : a+=((uint32_t)k[1]<<8);
|
||||||
|
case 1 : a+=k[0];
|
||||||
|
/* case 0: nothing left to add */
|
||||||
|
}
|
||||||
|
_c_mix(a,b,c);
|
||||||
|
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief hash a variable-length key into a 64-bit value
|
||||||
|
*
|
||||||
|
* The best hash table sizes are powers of 2. There is no need to do
|
||||||
|
* mod a prime (mod is sooo slow!). If you need less than 64 bits,
|
||||||
|
* use a bitmask. For example, if you need only 10 bits, do
|
||||||
|
* h = (h & hashmask(10));
|
||||||
|
* In which case, the hash table should have hashsize(10) elements.
|
||||||
|
*
|
||||||
|
* Use for hash table lookup, or anything where one collision in 2^^64
|
||||||
|
* is acceptable. Do NOT use for cryptographic purposes.
|
||||||
|
*
|
||||||
|
* @param k The key (the unaligned variable-length array of bytes).
|
||||||
|
* @param length The length of the key, counting by bytes.
|
||||||
|
* @param intval Initial value, can be any 8-byte value.
|
||||||
|
*
|
||||||
|
* @return A 64-bit value. Every bit of the key affects every bit of
|
||||||
|
* the return value. No funnels. Every 1-bit and 2-bit delta
|
||||||
|
* achieves avalanche. About 41+5len instructions.
|
||||||
|
*/
|
||||||
|
static inline uint64_t c_jhash64(const uint8_t *k, uint64_t length, uint64_t intval) {
|
||||||
|
uint64_t a,b,c,len;
|
||||||
|
|
||||||
|
/* Set up the internal state */
|
||||||
|
len = length;
|
||||||
|
a = b = intval; /* the previous hash value */
|
||||||
|
c = 0x9e3779b97f4a7c13LL; /* the golden ratio; an arbitrary value */
|
||||||
|
|
||||||
|
/* handle most of the key */
|
||||||
|
while (len >= 24)
|
||||||
|
{
|
||||||
|
a += (k[0] +((uint64_t)k[ 1]<< 8)+((uint64_t)k[ 2]<<16)+((uint64_t)k[ 3]<<24)
|
||||||
|
+((uint64_t)k[4 ]<<32)+((uint64_t)k[ 5]<<40)+((uint64_t)k[ 6]<<48)+((uint64_t)k[ 7]<<56));
|
||||||
|
b += (k[8] +((uint64_t)k[ 9]<< 8)+((uint64_t)k[10]<<16)+((uint64_t)k[11]<<24)
|
||||||
|
+((uint64_t)k[12]<<32)+((uint64_t)k[13]<<40)+((uint64_t)k[14]<<48)+((uint64_t)k[15]<<56));
|
||||||
|
c += (k[16] +((uint64_t)k[17]<< 8)+((uint64_t)k[18]<<16)+((uint64_t)k[19]<<24)
|
||||||
|
+((uint64_t)k[20]<<32)+((uint64_t)k[21]<<40)+((uint64_t)k[22]<<48)+((uint64_t)k[23]<<56));
|
||||||
|
_c_mix64(a,b,c);
|
||||||
|
k += 24; len -= 24;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* handle the last 23 bytes */
|
||||||
|
c += length;
|
||||||
|
switch(len) {
|
||||||
|
case 23: c+=((uint64_t)k[22]<<56);
|
||||||
|
case 22: c+=((uint64_t)k[21]<<48);
|
||||||
|
case 21: c+=((uint64_t)k[20]<<40);
|
||||||
|
case 20: c+=((uint64_t)k[19]<<32);
|
||||||
|
case 19: c+=((uint64_t)k[18]<<24);
|
||||||
|
case 18: c+=((uint64_t)k[17]<<16);
|
||||||
|
case 17: c+=((uint64_t)k[16]<<8);
|
||||||
|
/* the first byte of c is reserved for the length */
|
||||||
|
case 16: b+=((uint64_t)k[15]<<56);
|
||||||
|
case 15: b+=((uint64_t)k[14]<<48);
|
||||||
|
case 14: b+=((uint64_t)k[13]<<40);
|
||||||
|
case 13: b+=((uint64_t)k[12]<<32);
|
||||||
|
case 12: b+=((uint64_t)k[11]<<24);
|
||||||
|
case 11: b+=((uint64_t)k[10]<<16);
|
||||||
|
case 10: b+=((uint64_t)k[ 9]<<8);
|
||||||
|
case 9: b+=((uint64_t)k[ 8]);
|
||||||
|
case 8: a+=((uint64_t)k[ 7]<<56);
|
||||||
|
case 7: a+=((uint64_t)k[ 6]<<48);
|
||||||
|
case 6: a+=((uint64_t)k[ 5]<<40);
|
||||||
|
case 5: a+=((uint64_t)k[ 4]<<32);
|
||||||
|
case 4: a+=((uint64_t)k[ 3]<<24);
|
||||||
|
case 3: a+=((uint64_t)k[ 2]<<16);
|
||||||
|
case 2: a+=((uint64_t)k[ 1]<<8);
|
||||||
|
case 1: a+=((uint64_t)k[ 0]);
|
||||||
|
/* case 0: nothing left to add */
|
||||||
|
}
|
||||||
|
_c_mix64(a,b,c);
|
||||||
|
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* }@
|
||||||
|
*/
|
||||||
|
#endif /* _C_JHASH_H */
|
||||||
|
|
|
@ -40,6 +40,7 @@ set(3rdparty_INC
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/3rdparty/qtsingleapplication
|
${CMAKE_CURRENT_SOURCE_DIR}/3rdparty/qtsingleapplication
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/3rdparty/QProgressIndicator
|
${CMAKE_CURRENT_SOURCE_DIR}/3rdparty/QProgressIndicator
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/3rdparty/fancylineedit
|
${CMAKE_CURRENT_SOURCE_DIR}/3rdparty/fancylineedit
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/3rdparty/csync
|
||||||
)
|
)
|
||||||
|
|
||||||
set(libsync_SRCS
|
set(libsync_SRCS
|
||||||
|
|
Loading…
Reference in a new issue