mirror of
https://codeberg.org/superseriousbusiness/gotosocial.git
synced 2025-01-12 11:17:20 +03:00
9d0df426da
* feat: vendor minio client * feat: introduce storage package with s3 support * feat: serve s3 files directly this saves a lot of bandwith as the files are fetched from the object store directly * fix: use explicit local storage in tests * feat: integrate s3 storage with the main server * fix: add s3 config to cli tests * docs: explicitly set values in example config also adds license header to the storage package * fix: use better http status code on s3 redirect HTTP 302 Found is the best fit, as it signifies that the resource requested was found but not under its presumed URL 307/TemporaryRedirect would mean that this resource is usually located here, not in this case 303/SeeOther indicates that the redirection does not link to the requested resource but to another page * refactor: use context in storage driver interface
1504 lines
40 KiB
Go
1504 lines
40 KiB
Go
// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
|
||
|
||
// Package cpuid provides information about the CPU running the current program.
|
||
//
|
||
// CPU features are detected on startup, and kept for fast access through the life of the application.
|
||
// Currently x86 / x64 (AMD64) as well as arm64 is supported.
|
||
//
|
||
// You can access the CPU information by accessing the shared CPU variable of the cpuid library.
|
||
//
|
||
// Package home: https://github.com/klauspost/cpuid
|
||
package cpuid
|
||
|
||
import (
|
||
"math"
|
||
"strings"
|
||
)
|
||
|
||
// AMD refererence: https://www.amd.com/system/files/TechDocs/25481.pdf
|
||
// and Processor Programming Reference (PPR)
|
||
|
||
// Vendor is a representation of a CPU vendor.
|
||
type Vendor int
|
||
|
||
const (
|
||
Other Vendor = iota
|
||
Intel
|
||
AMD
|
||
VIA
|
||
Transmeta
|
||
NSC
|
||
KVM // Kernel-based Virtual Machine
|
||
MSVM // Microsoft Hyper-V or Windows Virtual PC
|
||
VMware
|
||
XenHVM
|
||
Bhyve
|
||
Hygon
|
||
SiS
|
||
RDC
|
||
)
|
||
|
||
const (
|
||
CMOV = 1 << iota // i686 CMOV
|
||
NX // NX (No-Execute) bit
|
||
AMD3DNOW // AMD 3DNOW
|
||
AMD3DNOWEXT // AMD 3DNowExt
|
||
MMX // standard MMX
|
||
MMXEXT // SSE integer functions or AMD MMX ext
|
||
SSE // SSE functions
|
||
SSE2 // P4 SSE functions
|
||
SSE3 // Prescott SSE3 functions
|
||
SSSE3 // Conroe SSSE3 functions
|
||
SSE4 // Penryn SSE4.1 functions
|
||
SSE4A // AMD Barcelona microarchitecture SSE4a instructions
|
||
SSE42 // Nehalem SSE4.2 functions
|
||
AVX // AVX functions
|
||
AVX2 // AVX2 functions
|
||
FMA3 // Intel FMA 3
|
||
FMA4 // Bulldozer FMA4 functions
|
||
XOP // Bulldozer XOP functions
|
||
F16C // Half-precision floating-point conversion
|
||
BMI1 // Bit Manipulation Instruction Set 1
|
||
BMI2 // Bit Manipulation Instruction Set 2
|
||
TBM // AMD Trailing Bit Manipulation
|
||
LZCNT // LZCNT instruction
|
||
POPCNT // POPCNT instruction
|
||
AESNI // Advanced Encryption Standard New Instructions
|
||
CLMUL // Carry-less Multiplication
|
||
HTT // Hyperthreading (enabled)
|
||
HLE // Hardware Lock Elision
|
||
RTM // Restricted Transactional Memory
|
||
RDRAND // RDRAND instruction is available
|
||
RDSEED // RDSEED instruction is available
|
||
ADX // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
||
SHA // Intel SHA Extensions
|
||
AVX512F // AVX-512 Foundation
|
||
AVX512DQ // AVX-512 Doubleword and Quadword Instructions
|
||
AVX512IFMA // AVX-512 Integer Fused Multiply-Add Instructions
|
||
AVX512PF // AVX-512 Prefetch Instructions
|
||
AVX512ER // AVX-512 Exponential and Reciprocal Instructions
|
||
AVX512CD // AVX-512 Conflict Detection Instructions
|
||
AVX512BW // AVX-512 Byte and Word Instructions
|
||
AVX512VL // AVX-512 Vector Length Extensions
|
||
AVX512VBMI // AVX-512 Vector Bit Manipulation Instructions
|
||
AVX512VBMI2 // AVX-512 Vector Bit Manipulation Instructions, Version 2
|
||
AVX512VNNI // AVX-512 Vector Neural Network Instructions
|
||
AVX512VPOPCNTDQ // AVX-512 Vector Population Count Doubleword and Quadword
|
||
GFNI // Galois Field New Instructions
|
||
VAES // Vector AES
|
||
AVX512BITALG // AVX-512 Bit Algorithms
|
||
VPCLMULQDQ // Carry-Less Multiplication Quadword
|
||
AVX512BF16 // AVX-512 BFLOAT16 Instructions
|
||
AVX512VP2INTERSECT // AVX-512 Intersect for D/Q
|
||
MPX // Intel MPX (Memory Protection Extensions)
|
||
ERMS // Enhanced REP MOVSB/STOSB
|
||
RDTSCP // RDTSCP Instruction
|
||
CX16 // CMPXCHG16B Instruction
|
||
SGX // Software Guard Extensions
|
||
SGXLC // Software Guard Extensions Launch Control
|
||
IBPB // Indirect Branch Restricted Speculation (IBRS) and Indirect Branch Predictor Barrier (IBPB)
|
||
STIBP // Single Thread Indirect Branch Predictors
|
||
VMX // Virtual Machine Extensions
|
||
|
||
// Performance indicators
|
||
SSE2SLOW // SSE2 is supported, but usually not faster
|
||
SSE3SLOW // SSE3 is supported, but usually not faster
|
||
ATOM // Atom processor, some SSSE3 instructions are slower
|
||
)
|
||
|
||
var flagNames = map[Flags]string{
|
||
CMOV: "CMOV", // i686 CMOV
|
||
NX: "NX", // NX (No-Execute) bit
|
||
AMD3DNOW: "AMD3DNOW", // AMD 3DNOW
|
||
AMD3DNOWEXT: "AMD3DNOWEXT", // AMD 3DNowExt
|
||
MMX: "MMX", // Standard MMX
|
||
MMXEXT: "MMXEXT", // SSE integer functions or AMD MMX ext
|
||
SSE: "SSE", // SSE functions
|
||
SSE2: "SSE2", // P4 SSE2 functions
|
||
SSE3: "SSE3", // Prescott SSE3 functions
|
||
SSSE3: "SSSE3", // Conroe SSSE3 functions
|
||
SSE4: "SSE4.1", // Penryn SSE4.1 functions
|
||
SSE4A: "SSE4A", // AMD Barcelona microarchitecture SSE4a instructions
|
||
SSE42: "SSE4.2", // Nehalem SSE4.2 functions
|
||
AVX: "AVX", // AVX functions
|
||
AVX2: "AVX2", // AVX functions
|
||
FMA3: "FMA3", // Intel FMA 3
|
||
FMA4: "FMA4", // Bulldozer FMA4 functions
|
||
XOP: "XOP", // Bulldozer XOP functions
|
||
F16C: "F16C", // Half-precision floating-point conversion
|
||
BMI1: "BMI1", // Bit Manipulation Instruction Set 1
|
||
BMI2: "BMI2", // Bit Manipulation Instruction Set 2
|
||
TBM: "TBM", // AMD Trailing Bit Manipulation
|
||
LZCNT: "LZCNT", // LZCNT instruction
|
||
POPCNT: "POPCNT", // POPCNT instruction
|
||
AESNI: "AESNI", // Advanced Encryption Standard New Instructions
|
||
CLMUL: "CLMUL", // Carry-less Multiplication
|
||
HTT: "HTT", // Hyperthreading (enabled)
|
||
HLE: "HLE", // Hardware Lock Elision
|
||
RTM: "RTM", // Restricted Transactional Memory
|
||
RDRAND: "RDRAND", // RDRAND instruction is available
|
||
RDSEED: "RDSEED", // RDSEED instruction is available
|
||
ADX: "ADX", // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
||
SHA: "SHA", // Intel SHA Extensions
|
||
AVX512F: "AVX512F", // AVX-512 Foundation
|
||
AVX512DQ: "AVX512DQ", // AVX-512 Doubleword and Quadword Instructions
|
||
AVX512IFMA: "AVX512IFMA", // AVX-512 Integer Fused Multiply-Add Instructions
|
||
AVX512PF: "AVX512PF", // AVX-512 Prefetch Instructions
|
||
AVX512ER: "AVX512ER", // AVX-512 Exponential and Reciprocal Instructions
|
||
AVX512CD: "AVX512CD", // AVX-512 Conflict Detection Instructions
|
||
AVX512BW: "AVX512BW", // AVX-512 Byte and Word Instructions
|
||
AVX512VL: "AVX512VL", // AVX-512 Vector Length Extensions
|
||
AVX512VBMI: "AVX512VBMI", // AVX-512 Vector Bit Manipulation Instructions
|
||
AVX512VBMI2: "AVX512VBMI2", // AVX-512 Vector Bit Manipulation Instructions, Version 2
|
||
AVX512VNNI: "AVX512VNNI", // AVX-512 Vector Neural Network Instructions
|
||
AVX512VPOPCNTDQ: "AVX512VPOPCNTDQ", // AVX-512 Vector Population Count Doubleword and Quadword
|
||
GFNI: "GFNI", // Galois Field New Instructions
|
||
VAES: "VAES", // Vector AES
|
||
AVX512BITALG: "AVX512BITALG", // AVX-512 Bit Algorithms
|
||
VPCLMULQDQ: "VPCLMULQDQ", // Carry-Less Multiplication Quadword
|
||
AVX512BF16: "AVX512BF16", // AVX-512 BFLOAT16 Instruction
|
||
AVX512VP2INTERSECT: "AVX512VP2INTERSECT", // AVX-512 Intersect for D/Q
|
||
MPX: "MPX", // Intel MPX (Memory Protection Extensions)
|
||
ERMS: "ERMS", // Enhanced REP MOVSB/STOSB
|
||
RDTSCP: "RDTSCP", // RDTSCP Instruction
|
||
CX16: "CX16", // CMPXCHG16B Instruction
|
||
SGX: "SGX", // Software Guard Extensions
|
||
SGXLC: "SGXLC", // Software Guard Extensions Launch Control
|
||
IBPB: "IBPB", // Indirect Branch Restricted Speculation and Indirect Branch Predictor Barrier
|
||
STIBP: "STIBP", // Single Thread Indirect Branch Predictors
|
||
VMX: "VMX", // Virtual Machine Extensions
|
||
|
||
// Performance indicators
|
||
SSE2SLOW: "SSE2SLOW", // SSE2 supported, but usually not faster
|
||
SSE3SLOW: "SSE3SLOW", // SSE3 supported, but usually not faster
|
||
ATOM: "ATOM", // Atom processor, some SSSE3 instructions are slower
|
||
|
||
}
|
||
|
||
/* all special features for arm64 should be defined here */
|
||
const (
|
||
/* extension instructions */
|
||
FP ArmFlags = 1 << iota
|
||
ASIMD
|
||
EVTSTRM
|
||
AES
|
||
PMULL
|
||
SHA1
|
||
SHA2
|
||
CRC32
|
||
ATOMICS
|
||
FPHP
|
||
ASIMDHP
|
||
ARMCPUID
|
||
ASIMDRDM
|
||
JSCVT
|
||
FCMA
|
||
LRCPC
|
||
DCPOP
|
||
SHA3
|
||
SM3
|
||
SM4
|
||
ASIMDDP
|
||
SHA512
|
||
SVE
|
||
GPA
|
||
)
|
||
|
||
var flagNamesArm = map[ArmFlags]string{
|
||
FP: "FP", // Single-precision and double-precision floating point
|
||
ASIMD: "ASIMD", // Advanced SIMD
|
||
EVTSTRM: "EVTSTRM", // Generic timer
|
||
AES: "AES", // AES instructions
|
||
PMULL: "PMULL", // Polynomial Multiply instructions (PMULL/PMULL2)
|
||
SHA1: "SHA1", // SHA-1 instructions (SHA1C, etc)
|
||
SHA2: "SHA2", // SHA-2 instructions (SHA256H, etc)
|
||
CRC32: "CRC32", // CRC32/CRC32C instructions
|
||
ATOMICS: "ATOMICS", // Large System Extensions (LSE)
|
||
FPHP: "FPHP", // Half-precision floating point
|
||
ASIMDHP: "ASIMDHP", // Advanced SIMD half-precision floating point
|
||
ARMCPUID: "CPUID", // Some CPU ID registers readable at user-level
|
||
ASIMDRDM: "ASIMDRDM", // Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
|
||
JSCVT: "JSCVT", // Javascript-style double->int convert (FJCVTZS)
|
||
FCMA: "FCMA", // Floatin point complex number addition and multiplication
|
||
LRCPC: "LRCPC", // Weaker release consistency (LDAPR, etc)
|
||
DCPOP: "DCPOP", // Data cache clean to Point of Persistence (DC CVAP)
|
||
SHA3: "SHA3", // SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
|
||
SM3: "SM3", // SM3 instructions
|
||
SM4: "SM4", // SM4 instructions
|
||
ASIMDDP: "ASIMDDP", // SIMD Dot Product
|
||
SHA512: "SHA512", // SHA512 instructions
|
||
SVE: "SVE", // Scalable Vector Extension
|
||
GPA: "GPA", // Generic Pointer Authentication
|
||
}
|
||
|
||
// CPUInfo contains information about the detected system CPU.
|
||
type CPUInfo struct {
|
||
BrandName string // Brand name reported by the CPU
|
||
VendorID Vendor // Comparable CPU vendor ID
|
||
VendorString string // Raw vendor string.
|
||
Features Flags // Features of the CPU (x64)
|
||
Arm ArmFlags // Features of the CPU (arm)
|
||
PhysicalCores int // Number of physical processor cores in your CPU. Will be 0 if undetectable.
|
||
ThreadsPerCore int // Number of threads per physical core. Will be 1 if undetectable.
|
||
LogicalCores int // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
|
||
Family int // CPU family number
|
||
Model int // CPU model number
|
||
CacheLine int // Cache line size in bytes. Will be 0 if undetectable.
|
||
Hz int64 // Clock speed, if known
|
||
Cache struct {
|
||
L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
|
||
L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
|
||
L2 int // L2 Cache (per core or shared). Will be -1 if undetected
|
||
L3 int // L3 Cache (per core, per ccx or shared). Will be -1 if undetected
|
||
}
|
||
SGX SGXSupport
|
||
maxFunc uint32
|
||
maxExFunc uint32
|
||
}
|
||
|
||
var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
|
||
var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
|
||
var xgetbv func(index uint32) (eax, edx uint32)
|
||
var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
|
||
|
||
// CPU contains information about the CPU as detected on startup,
|
||
// or when Detect last was called.
|
||
//
|
||
// Use this as the primary entry point to you data.
|
||
var CPU CPUInfo
|
||
|
||
func init() {
|
||
initCPU()
|
||
Detect()
|
||
}
|
||
|
||
// Detect will re-detect current CPU info.
|
||
// This will replace the content of the exported CPU variable.
|
||
//
|
||
// Unless you expect the CPU to change while you are running your program
|
||
// you should not need to call this function.
|
||
// If you call this, you must ensure that no other goroutine is accessing the
|
||
// exported CPU variable.
|
||
func Detect() {
|
||
// Set defaults
|
||
CPU.ThreadsPerCore = 1
|
||
CPU.Cache.L1I = -1
|
||
CPU.Cache.L1D = -1
|
||
CPU.Cache.L2 = -1
|
||
CPU.Cache.L3 = -1
|
||
addInfo(&CPU)
|
||
}
|
||
|
||
// Generated here: http://play.golang.org/p/BxFH2Gdc0G
|
||
|
||
// Cmov indicates support of CMOV instructions
|
||
func (c CPUInfo) Cmov() bool {
|
||
return c.Features&CMOV != 0
|
||
}
|
||
|
||
// Amd3dnow indicates support of AMD 3DNOW! instructions
|
||
func (c CPUInfo) Amd3dnow() bool {
|
||
return c.Features&AMD3DNOW != 0
|
||
}
|
||
|
||
// Amd3dnowExt indicates support of AMD 3DNOW! Extended instructions
|
||
func (c CPUInfo) Amd3dnowExt() bool {
|
||
return c.Features&AMD3DNOWEXT != 0
|
||
}
|
||
|
||
// VMX indicates support of VMX
|
||
func (c CPUInfo) VMX() bool {
|
||
return c.Features&VMX != 0
|
||
}
|
||
|
||
// MMX indicates support of MMX instructions
|
||
func (c CPUInfo) MMX() bool {
|
||
return c.Features&MMX != 0
|
||
}
|
||
|
||
// MMXExt indicates support of MMXEXT instructions
|
||
// (SSE integer functions or AMD MMX ext)
|
||
func (c CPUInfo) MMXExt() bool {
|
||
return c.Features&MMXEXT != 0
|
||
}
|
||
|
||
// SSE indicates support of SSE instructions
|
||
func (c CPUInfo) SSE() bool {
|
||
return c.Features&SSE != 0
|
||
}
|
||
|
||
// SSE2 indicates support of SSE 2 instructions
|
||
func (c CPUInfo) SSE2() bool {
|
||
return c.Features&SSE2 != 0
|
||
}
|
||
|
||
// SSE3 indicates support of SSE 3 instructions
|
||
func (c CPUInfo) SSE3() bool {
|
||
return c.Features&SSE3 != 0
|
||
}
|
||
|
||
// SSSE3 indicates support of SSSE 3 instructions
|
||
func (c CPUInfo) SSSE3() bool {
|
||
return c.Features&SSSE3 != 0
|
||
}
|
||
|
||
// SSE4 indicates support of SSE 4 (also called SSE 4.1) instructions
|
||
func (c CPUInfo) SSE4() bool {
|
||
return c.Features&SSE4 != 0
|
||
}
|
||
|
||
// SSE42 indicates support of SSE4.2 instructions
|
||
func (c CPUInfo) SSE42() bool {
|
||
return c.Features&SSE42 != 0
|
||
}
|
||
|
||
// AVX indicates support of AVX instructions
|
||
// and operating system support of AVX instructions
|
||
func (c CPUInfo) AVX() bool {
|
||
return c.Features&AVX != 0
|
||
}
|
||
|
||
// AVX2 indicates support of AVX2 instructions
|
||
func (c CPUInfo) AVX2() bool {
|
||
return c.Features&AVX2 != 0
|
||
}
|
||
|
||
// FMA3 indicates support of FMA3 instructions
|
||
func (c CPUInfo) FMA3() bool {
|
||
return c.Features&FMA3 != 0
|
||
}
|
||
|
||
// FMA4 indicates support of FMA4 instructions
|
||
func (c CPUInfo) FMA4() bool {
|
||
return c.Features&FMA4 != 0
|
||
}
|
||
|
||
// XOP indicates support of XOP instructions
|
||
func (c CPUInfo) XOP() bool {
|
||
return c.Features&XOP != 0
|
||
}
|
||
|
||
// F16C indicates support of F16C instructions
|
||
func (c CPUInfo) F16C() bool {
|
||
return c.Features&F16C != 0
|
||
}
|
||
|
||
// BMI1 indicates support of BMI1 instructions
|
||
func (c CPUInfo) BMI1() bool {
|
||
return c.Features&BMI1 != 0
|
||
}
|
||
|
||
// BMI2 indicates support of BMI2 instructions
|
||
func (c CPUInfo) BMI2() bool {
|
||
return c.Features&BMI2 != 0
|
||
}
|
||
|
||
// TBM indicates support of TBM instructions
|
||
// (AMD Trailing Bit Manipulation)
|
||
func (c CPUInfo) TBM() bool {
|
||
return c.Features&TBM != 0
|
||
}
|
||
|
||
// Lzcnt indicates support of LZCNT instruction
|
||
func (c CPUInfo) Lzcnt() bool {
|
||
return c.Features&LZCNT != 0
|
||
}
|
||
|
||
// Popcnt indicates support of POPCNT instruction
|
||
func (c CPUInfo) Popcnt() bool {
|
||
return c.Features&POPCNT != 0
|
||
}
|
||
|
||
// HTT indicates the processor has Hyperthreading enabled
|
||
func (c CPUInfo) HTT() bool {
|
||
return c.Features&HTT != 0
|
||
}
|
||
|
||
// SSE2Slow indicates that SSE2 may be slow on this processor
|
||
func (c CPUInfo) SSE2Slow() bool {
|
||
return c.Features&SSE2SLOW != 0
|
||
}
|
||
|
||
// SSE3Slow indicates that SSE3 may be slow on this processor
|
||
func (c CPUInfo) SSE3Slow() bool {
|
||
return c.Features&SSE3SLOW != 0
|
||
}
|
||
|
||
// AesNi indicates support of AES-NI instructions
|
||
// (Advanced Encryption Standard New Instructions)
|
||
func (c CPUInfo) AesNi() bool {
|
||
return c.Features&AESNI != 0
|
||
}
|
||
|
||
// Clmul indicates support of CLMUL instructions
|
||
// (Carry-less Multiplication)
|
||
func (c CPUInfo) Clmul() bool {
|
||
return c.Features&CLMUL != 0
|
||
}
|
||
|
||
// NX indicates support of NX (No-Execute) bit
|
||
func (c CPUInfo) NX() bool {
|
||
return c.Features&NX != 0
|
||
}
|
||
|
||
// SSE4A indicates support of AMD Barcelona microarchitecture SSE4a instructions
|
||
func (c CPUInfo) SSE4A() bool {
|
||
return c.Features&SSE4A != 0
|
||
}
|
||
|
||
// HLE indicates support of Hardware Lock Elision
|
||
func (c CPUInfo) HLE() bool {
|
||
return c.Features&HLE != 0
|
||
}
|
||
|
||
// RTM indicates support of Restricted Transactional Memory
|
||
func (c CPUInfo) RTM() bool {
|
||
return c.Features&RTM != 0
|
||
}
|
||
|
||
// Rdrand indicates support of RDRAND instruction is available
|
||
func (c CPUInfo) Rdrand() bool {
|
||
return c.Features&RDRAND != 0
|
||
}
|
||
|
||
// Rdseed indicates support of RDSEED instruction is available
|
||
func (c CPUInfo) Rdseed() bool {
|
||
return c.Features&RDSEED != 0
|
||
}
|
||
|
||
// ADX indicates support of Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
||
func (c CPUInfo) ADX() bool {
|
||
return c.Features&ADX != 0
|
||
}
|
||
|
||
// SHA indicates support of Intel SHA Extensions
|
||
func (c CPUInfo) SHA() bool {
|
||
return c.Features&SHA != 0
|
||
}
|
||
|
||
// AVX512F indicates support of AVX-512 Foundation
|
||
func (c CPUInfo) AVX512F() bool {
|
||
return c.Features&AVX512F != 0
|
||
}
|
||
|
||
// AVX512DQ indicates support of AVX-512 Doubleword and Quadword Instructions
|
||
func (c CPUInfo) AVX512DQ() bool {
|
||
return c.Features&AVX512DQ != 0
|
||
}
|
||
|
||
// AVX512IFMA indicates support of AVX-512 Integer Fused Multiply-Add Instructions
|
||
func (c CPUInfo) AVX512IFMA() bool {
|
||
return c.Features&AVX512IFMA != 0
|
||
}
|
||
|
||
// AVX512PF indicates support of AVX-512 Prefetch Instructions
|
||
func (c CPUInfo) AVX512PF() bool {
|
||
return c.Features&AVX512PF != 0
|
||
}
|
||
|
||
// AVX512ER indicates support of AVX-512 Exponential and Reciprocal Instructions
|
||
func (c CPUInfo) AVX512ER() bool {
|
||
return c.Features&AVX512ER != 0
|
||
}
|
||
|
||
// AVX512CD indicates support of AVX-512 Conflict Detection Instructions
|
||
func (c CPUInfo) AVX512CD() bool {
|
||
return c.Features&AVX512CD != 0
|
||
}
|
||
|
||
// AVX512BW indicates support of AVX-512 Byte and Word Instructions
|
||
func (c CPUInfo) AVX512BW() bool {
|
||
return c.Features&AVX512BW != 0
|
||
}
|
||
|
||
// AVX512VL indicates support of AVX-512 Vector Length Extensions
|
||
func (c CPUInfo) AVX512VL() bool {
|
||
return c.Features&AVX512VL != 0
|
||
}
|
||
|
||
// AVX512VBMI indicates support of AVX-512 Vector Bit Manipulation Instructions
|
||
func (c CPUInfo) AVX512VBMI() bool {
|
||
return c.Features&AVX512VBMI != 0
|
||
}
|
||
|
||
// AVX512VBMI2 indicates support of AVX-512 Vector Bit Manipulation Instructions, Version 2
|
||
func (c CPUInfo) AVX512VBMI2() bool {
|
||
return c.Features&AVX512VBMI2 != 0
|
||
}
|
||
|
||
// AVX512VNNI indicates support of AVX-512 Vector Neural Network Instructions
|
||
func (c CPUInfo) AVX512VNNI() bool {
|
||
return c.Features&AVX512VNNI != 0
|
||
}
|
||
|
||
// AVX512VPOPCNTDQ indicates support of AVX-512 Vector Population Count Doubleword and Quadword
|
||
func (c CPUInfo) AVX512VPOPCNTDQ() bool {
|
||
return c.Features&AVX512VPOPCNTDQ != 0
|
||
}
|
||
|
||
// GFNI indicates support of Galois Field New Instructions
|
||
func (c CPUInfo) GFNI() bool {
|
||
return c.Features&GFNI != 0
|
||
}
|
||
|
||
// VAES indicates support of Vector AES
|
||
func (c CPUInfo) VAES() bool {
|
||
return c.Features&VAES != 0
|
||
}
|
||
|
||
// AVX512BITALG indicates support of AVX-512 Bit Algorithms
|
||
func (c CPUInfo) AVX512BITALG() bool {
|
||
return c.Features&AVX512BITALG != 0
|
||
}
|
||
|
||
// VPCLMULQDQ indicates support of Carry-Less Multiplication Quadword
|
||
func (c CPUInfo) VPCLMULQDQ() bool {
|
||
return c.Features&VPCLMULQDQ != 0
|
||
}
|
||
|
||
// AVX512BF16 indicates support of
|
||
func (c CPUInfo) AVX512BF16() bool {
|
||
return c.Features&AVX512BF16 != 0
|
||
}
|
||
|
||
// AVX512VP2INTERSECT indicates support of
|
||
func (c CPUInfo) AVX512VP2INTERSECT() bool {
|
||
return c.Features&AVX512VP2INTERSECT != 0
|
||
}
|
||
|
||
// MPX indicates support of Intel MPX (Memory Protection Extensions)
|
||
func (c CPUInfo) MPX() bool {
|
||
return c.Features&MPX != 0
|
||
}
|
||
|
||
// ERMS indicates support of Enhanced REP MOVSB/STOSB
|
||
func (c CPUInfo) ERMS() bool {
|
||
return c.Features&ERMS != 0
|
||
}
|
||
|
||
// RDTSCP Instruction is available.
|
||
func (c CPUInfo) RDTSCP() bool {
|
||
return c.Features&RDTSCP != 0
|
||
}
|
||
|
||
// CX16 indicates if CMPXCHG16B instruction is available.
|
||
func (c CPUInfo) CX16() bool {
|
||
return c.Features&CX16 != 0
|
||
}
|
||
|
||
// TSX is split into HLE (Hardware Lock Elision) and RTM (Restricted Transactional Memory) detection.
|
||
// So TSX simply checks that.
|
||
func (c CPUInfo) TSX() bool {
|
||
return c.Features&(HLE|RTM) == HLE|RTM
|
||
}
|
||
|
||
// Atom indicates an Atom processor
|
||
func (c CPUInfo) Atom() bool {
|
||
return c.Features&ATOM != 0
|
||
}
|
||
|
||
// Intel returns true if vendor is recognized as Intel
|
||
func (c CPUInfo) Intel() bool {
|
||
return c.VendorID == Intel
|
||
}
|
||
|
||
// AMD returns true if vendor is recognized as AMD
|
||
func (c CPUInfo) AMD() bool {
|
||
return c.VendorID == AMD
|
||
}
|
||
|
||
// Hygon returns true if vendor is recognized as Hygon
|
||
func (c CPUInfo) Hygon() bool {
|
||
return c.VendorID == Hygon
|
||
}
|
||
|
||
// Transmeta returns true if vendor is recognized as Transmeta
|
||
func (c CPUInfo) Transmeta() bool {
|
||
return c.VendorID == Transmeta
|
||
}
|
||
|
||
// NSC returns true if vendor is recognized as National Semiconductor
|
||
func (c CPUInfo) NSC() bool {
|
||
return c.VendorID == NSC
|
||
}
|
||
|
||
// VIA returns true if vendor is recognized as VIA
|
||
func (c CPUInfo) VIA() bool {
|
||
return c.VendorID == VIA
|
||
}
|
||
|
||
// RTCounter returns the 64-bit time-stamp counter
|
||
// Uses the RDTSCP instruction. The value 0 is returned
|
||
// if the CPU does not support the instruction.
|
||
func (c CPUInfo) RTCounter() uint64 {
|
||
if !c.RDTSCP() {
|
||
return 0
|
||
}
|
||
a, _, _, d := rdtscpAsm()
|
||
return uint64(a) | (uint64(d) << 32)
|
||
}
|
||
|
||
// Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
|
||
// This variable is OS dependent, but on Linux contains information
|
||
// about the current cpu/core the code is running on.
|
||
// If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
|
||
func (c CPUInfo) Ia32TscAux() uint32 {
|
||
if !c.RDTSCP() {
|
||
return 0
|
||
}
|
||
_, _, ecx, _ := rdtscpAsm()
|
||
return ecx
|
||
}
|
||
|
||
// LogicalCPU will return the Logical CPU the code is currently executing on.
|
||
// This is likely to change when the OS re-schedules the running thread
|
||
// to another CPU.
|
||
// If the current core cannot be detected, -1 will be returned.
|
||
func (c CPUInfo) LogicalCPU() int {
|
||
if c.maxFunc < 1 {
|
||
return -1
|
||
}
|
||
_, ebx, _, _ := cpuid(1)
|
||
return int(ebx >> 24)
|
||
}
|
||
|
||
// hertz tries to compute the clock speed of the CPU. If leaf 15 is
|
||
// supported, use it, otherwise parse the brand string. Yes, really.
|
||
func hertz(model string) int64 {
|
||
mfi := maxFunctionID()
|
||
if mfi >= 0x15 {
|
||
eax, ebx, ecx, _ := cpuid(0x15)
|
||
if eax != 0 && ebx != 0 && ecx != 0 {
|
||
return int64((int64(ecx) * int64(ebx)) / int64(eax))
|
||
}
|
||
}
|
||
// computeHz determines the official rated speed of a CPU from its brand
|
||
// string. This insanity is *actually the official documented way to do
|
||
// this according to Intel*, prior to leaf 0x15 existing. The official
|
||
// documentation only shows this working for exactly `x.xx` or `xxxx`
|
||
// cases, e.g., `2.50GHz` or `1300MHz`; this parser will accept other
|
||
// sizes.
|
||
hz := strings.LastIndex(model, "Hz")
|
||
if hz < 3 {
|
||
return -1
|
||
}
|
||
var multiplier int64
|
||
switch model[hz-1] {
|
||
case 'M':
|
||
multiplier = 1000 * 1000
|
||
case 'G':
|
||
multiplier = 1000 * 1000 * 1000
|
||
case 'T':
|
||
multiplier = 1000 * 1000 * 1000 * 1000
|
||
}
|
||
if multiplier == 0 {
|
||
return -1
|
||
}
|
||
freq := int64(0)
|
||
divisor := int64(0)
|
||
decimalShift := int64(1)
|
||
var i int
|
||
for i = hz - 2; i >= 0 && model[i] != ' '; i-- {
|
||
if model[i] >= '0' && model[i] <= '9' {
|
||
freq += int64(model[i]-'0') * decimalShift
|
||
decimalShift *= 10
|
||
} else if model[i] == '.' {
|
||
if divisor != 0 {
|
||
return -1
|
||
}
|
||
divisor = decimalShift
|
||
} else {
|
||
return -1
|
||
}
|
||
}
|
||
// we didn't find a space
|
||
if i < 0 {
|
||
return -1
|
||
}
|
||
if divisor != 0 {
|
||
return (freq * multiplier) / divisor
|
||
}
|
||
return freq * multiplier
|
||
}
|
||
|
||
// VM Will return true if the cpu id indicates we are in
|
||
// a virtual machine. This is only a hint, and will very likely
|
||
// have many false negatives.
|
||
func (c CPUInfo) VM() bool {
|
||
switch c.VendorID {
|
||
case MSVM, KVM, VMware, XenHVM, Bhyve:
|
||
return true
|
||
}
|
||
return false
|
||
}
|
||
|
||
// Flags contains detected cpu features and characteristics
|
||
type Flags uint64
|
||
|
||
// ArmFlags contains detected ARM cpu features and characteristics
|
||
type ArmFlags uint64
|
||
|
||
// String returns a string representation of the detected
|
||
// CPU features.
|
||
func (f Flags) String() string {
|
||
return strings.Join(f.Strings(), ",")
|
||
}
|
||
|
||
// Strings returns an array of the detected features.
|
||
func (f Flags) Strings() []string {
|
||
r := make([]string, 0, 20)
|
||
for i := uint(0); i < 64; i++ {
|
||
key := Flags(1 << i)
|
||
val := flagNames[key]
|
||
if f&key != 0 {
|
||
r = append(r, val)
|
||
}
|
||
}
|
||
return r
|
||
}
|
||
|
||
// String returns a string representation of the detected
|
||
// CPU features.
|
||
func (f ArmFlags) String() string {
|
||
return strings.Join(f.Strings(), ",")
|
||
}
|
||
|
||
// Strings returns an array of the detected features.
|
||
func (f ArmFlags) Strings() []string {
|
||
r := make([]string, 0, 20)
|
||
for i := uint(0); i < 64; i++ {
|
||
key := ArmFlags(1 << i)
|
||
val := flagNamesArm[key]
|
||
if f&key != 0 {
|
||
r = append(r, val)
|
||
}
|
||
}
|
||
return r
|
||
}
|
||
func maxExtendedFunction() uint32 {
|
||
eax, _, _, _ := cpuid(0x80000000)
|
||
return eax
|
||
}
|
||
|
||
func maxFunctionID() uint32 {
|
||
a, _, _, _ := cpuid(0)
|
||
return a
|
||
}
|
||
|
||
func brandName() string {
|
||
if maxExtendedFunction() >= 0x80000004 {
|
||
v := make([]uint32, 0, 48)
|
||
for i := uint32(0); i < 3; i++ {
|
||
a, b, c, d := cpuid(0x80000002 + i)
|
||
v = append(v, a, b, c, d)
|
||
}
|
||
return strings.Trim(string(valAsString(v...)), " ")
|
||
}
|
||
return "unknown"
|
||
}
|
||
|
||
func threadsPerCore() int {
|
||
mfi := maxFunctionID()
|
||
vend, _ := vendorID()
|
||
|
||
if mfi < 0x4 || (vend != Intel && vend != AMD) {
|
||
return 1
|
||
}
|
||
|
||
if mfi < 0xb {
|
||
if vend != Intel {
|
||
return 1
|
||
}
|
||
_, b, _, d := cpuid(1)
|
||
if (d & (1 << 28)) != 0 {
|
||
// v will contain logical core count
|
||
v := (b >> 16) & 255
|
||
if v > 1 {
|
||
a4, _, _, _ := cpuid(4)
|
||
// physical cores
|
||
v2 := (a4 >> 26) + 1
|
||
if v2 > 0 {
|
||
return int(v) / int(v2)
|
||
}
|
||
}
|
||
}
|
||
return 1
|
||
}
|
||
_, b, _, _ := cpuidex(0xb, 0)
|
||
if b&0xffff == 0 {
|
||
return 1
|
||
}
|
||
return int(b & 0xffff)
|
||
}
|
||
|
||
func logicalCores() int {
|
||
mfi := maxFunctionID()
|
||
v, _ := vendorID()
|
||
switch v {
|
||
case Intel:
|
||
// Use this on old Intel processors
|
||
if mfi < 0xb {
|
||
if mfi < 1 {
|
||
return 0
|
||
}
|
||
// CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
|
||
// that can be assigned to logical processors in a physical package.
|
||
// The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
|
||
_, ebx, _, _ := cpuid(1)
|
||
logical := (ebx >> 16) & 0xff
|
||
return int(logical)
|
||
}
|
||
_, b, _, _ := cpuidex(0xb, 1)
|
||
return int(b & 0xffff)
|
||
case AMD, Hygon:
|
||
_, b, _, _ := cpuid(1)
|
||
return int((b >> 16) & 0xff)
|
||
default:
|
||
return 0
|
||
}
|
||
}
|
||
|
||
func familyModel() (int, int) {
|
||
if maxFunctionID() < 0x1 {
|
||
return 0, 0
|
||
}
|
||
eax, _, _, _ := cpuid(1)
|
||
family := ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff)
|
||
model := ((eax >> 4) & 0xf) + ((eax >> 12) & 0xf0)
|
||
return int(family), int(model)
|
||
}
|
||
|
||
func physicalCores() int {
|
||
v, _ := vendorID()
|
||
switch v {
|
||
case Intel:
|
||
return logicalCores() / threadsPerCore()
|
||
case AMD, Hygon:
|
||
lc := logicalCores()
|
||
tpc := threadsPerCore()
|
||
if lc > 0 && tpc > 0 {
|
||
return lc / tpc
|
||
}
|
||
// The following is inaccurate on AMD EPYC 7742 64-Core Processor
|
||
|
||
if maxExtendedFunction() >= 0x80000008 {
|
||
_, _, c, _ := cpuid(0x80000008)
|
||
return int(c&0xff) + 1
|
||
}
|
||
}
|
||
return 0
|
||
}
|
||
|
||
// Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
|
||
var vendorMapping = map[string]Vendor{
|
||
"AMDisbetter!": AMD,
|
||
"AuthenticAMD": AMD,
|
||
"CentaurHauls": VIA,
|
||
"GenuineIntel": Intel,
|
||
"TransmetaCPU": Transmeta,
|
||
"GenuineTMx86": Transmeta,
|
||
"Geode by NSC": NSC,
|
||
"VIA VIA VIA ": VIA,
|
||
"KVMKVMKVMKVM": KVM,
|
||
"Microsoft Hv": MSVM,
|
||
"VMwareVMware": VMware,
|
||
"XenVMMXenVMM": XenHVM,
|
||
"bhyve bhyve ": Bhyve,
|
||
"HygonGenuine": Hygon,
|
||
"Vortex86 SoC": SiS,
|
||
"SiS SiS SiS ": SiS,
|
||
"RiseRiseRise": SiS,
|
||
"Genuine RDC": RDC,
|
||
}
|
||
|
||
func vendorID() (Vendor, string) {
|
||
_, b, c, d := cpuid(0)
|
||
v := string(valAsString(b, d, c))
|
||
vend, ok := vendorMapping[v]
|
||
if !ok {
|
||
return Other, v
|
||
}
|
||
return vend, v
|
||
}
|
||
|
||
func cacheLine() int {
|
||
if maxFunctionID() < 0x1 {
|
||
return 0
|
||
}
|
||
|
||
_, ebx, _, _ := cpuid(1)
|
||
cache := (ebx & 0xff00) >> 5 // cflush size
|
||
if cache == 0 && maxExtendedFunction() >= 0x80000006 {
|
||
_, _, ecx, _ := cpuid(0x80000006)
|
||
cache = ecx & 0xff // cacheline size
|
||
}
|
||
// TODO: Read from Cache and TLB Information
|
||
return int(cache)
|
||
}
|
||
|
||
func (c *CPUInfo) cacheSize() {
|
||
c.Cache.L1D = -1
|
||
c.Cache.L1I = -1
|
||
c.Cache.L2 = -1
|
||
c.Cache.L3 = -1
|
||
vendor, _ := vendorID()
|
||
switch vendor {
|
||
case Intel:
|
||
if maxFunctionID() < 4 {
|
||
return
|
||
}
|
||
for i := uint32(0); ; i++ {
|
||
eax, ebx, ecx, _ := cpuidex(4, i)
|
||
cacheType := eax & 15
|
||
if cacheType == 0 {
|
||
break
|
||
}
|
||
cacheLevel := (eax >> 5) & 7
|
||
coherency := int(ebx&0xfff) + 1
|
||
partitions := int((ebx>>12)&0x3ff) + 1
|
||
associativity := int((ebx>>22)&0x3ff) + 1
|
||
sets := int(ecx) + 1
|
||
size := associativity * partitions * coherency * sets
|
||
switch cacheLevel {
|
||
case 1:
|
||
if cacheType == 1 {
|
||
// 1 = Data Cache
|
||
c.Cache.L1D = size
|
||
} else if cacheType == 2 {
|
||
// 2 = Instruction Cache
|
||
c.Cache.L1I = size
|
||
} else {
|
||
if c.Cache.L1D < 0 {
|
||
c.Cache.L1I = size
|
||
}
|
||
if c.Cache.L1I < 0 {
|
||
c.Cache.L1I = size
|
||
}
|
||
}
|
||
case 2:
|
||
c.Cache.L2 = size
|
||
case 3:
|
||
c.Cache.L3 = size
|
||
}
|
||
}
|
||
case AMD, Hygon:
|
||
// Untested.
|
||
if maxExtendedFunction() < 0x80000005 {
|
||
return
|
||
}
|
||
_, _, ecx, edx := cpuid(0x80000005)
|
||
c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
|
||
c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)
|
||
|
||
if maxExtendedFunction() < 0x80000006 {
|
||
return
|
||
}
|
||
_, _, ecx, _ = cpuid(0x80000006)
|
||
c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
|
||
|
||
// CPUID Fn8000_001D_EAX_x[N:0] Cache Properties
|
||
if maxExtendedFunction() < 0x8000001D {
|
||
return
|
||
}
|
||
for i := uint32(0); i < math.MaxUint32; i++ {
|
||
eax, ebx, ecx, _ := cpuidex(0x8000001D, i)
|
||
|
||
level := (eax >> 5) & 7
|
||
cacheNumSets := ecx + 1
|
||
cacheLineSize := 1 + (ebx & 2047)
|
||
cachePhysPartitions := 1 + ((ebx >> 12) & 511)
|
||
cacheNumWays := 1 + ((ebx >> 22) & 511)
|
||
|
||
typ := eax & 15
|
||
size := int(cacheNumSets * cacheLineSize * cachePhysPartitions * cacheNumWays)
|
||
if typ == 0 {
|
||
return
|
||
}
|
||
|
||
switch level {
|
||
case 1:
|
||
switch typ {
|
||
case 1:
|
||
// Data cache
|
||
c.Cache.L1D = size
|
||
case 2:
|
||
// Inst cache
|
||
c.Cache.L1I = size
|
||
default:
|
||
if c.Cache.L1D < 0 {
|
||
c.Cache.L1I = size
|
||
}
|
||
if c.Cache.L1I < 0 {
|
||
c.Cache.L1I = size
|
||
}
|
||
}
|
||
case 2:
|
||
c.Cache.L2 = size
|
||
case 3:
|
||
c.Cache.L3 = size
|
||
}
|
||
}
|
||
}
|
||
|
||
return
|
||
}
|
||
|
||
type SGXEPCSection struct {
|
||
BaseAddress uint64
|
||
EPCSize uint64
|
||
}
|
||
|
||
type SGXSupport struct {
|
||
Available bool
|
||
LaunchControl bool
|
||
SGX1Supported bool
|
||
SGX2Supported bool
|
||
MaxEnclaveSizeNot64 int64
|
||
MaxEnclaveSize64 int64
|
||
EPCSections []SGXEPCSection
|
||
}
|
||
|
||
func hasSGX(available, lc bool) (rval SGXSupport) {
|
||
rval.Available = available
|
||
|
||
if !available {
|
||
return
|
||
}
|
||
|
||
rval.LaunchControl = lc
|
||
|
||
a, _, _, d := cpuidex(0x12, 0)
|
||
rval.SGX1Supported = a&0x01 != 0
|
||
rval.SGX2Supported = a&0x02 != 0
|
||
rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF) // pow 2
|
||
rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
|
||
rval.EPCSections = make([]SGXEPCSection, 0)
|
||
|
||
for subleaf := uint32(2); subleaf < 2+8; subleaf++ {
|
||
eax, ebx, ecx, edx := cpuidex(0x12, subleaf)
|
||
leafType := eax & 0xf
|
||
|
||
if leafType == 0 {
|
||
// Invalid subleaf, stop iterating
|
||
break
|
||
} else if leafType == 1 {
|
||
// EPC Section subleaf
|
||
baseAddress := uint64(eax&0xfffff000) + (uint64(ebx&0x000fffff) << 32)
|
||
size := uint64(ecx&0xfffff000) + (uint64(edx&0x000fffff) << 32)
|
||
|
||
section := SGXEPCSection{BaseAddress: baseAddress, EPCSize: size}
|
||
rval.EPCSections = append(rval.EPCSections, section)
|
||
}
|
||
}
|
||
|
||
return
|
||
}
|
||
|
||
func support() Flags {
|
||
mfi := maxFunctionID()
|
||
vend, _ := vendorID()
|
||
if mfi < 0x1 {
|
||
return 0
|
||
}
|
||
rval := uint64(0)
|
||
_, _, c, d := cpuid(1)
|
||
if (d & (1 << 15)) != 0 {
|
||
rval |= CMOV
|
||
}
|
||
if (d & (1 << 23)) != 0 {
|
||
rval |= MMX
|
||
}
|
||
if (d & (1 << 25)) != 0 {
|
||
rval |= MMXEXT
|
||
}
|
||
if (d & (1 << 25)) != 0 {
|
||
rval |= SSE
|
||
}
|
||
if (d & (1 << 26)) != 0 {
|
||
rval |= SSE2
|
||
}
|
||
if (c & 1) != 0 {
|
||
rval |= SSE3
|
||
}
|
||
if (c & (1 << 5)) != 0 {
|
||
rval |= VMX
|
||
}
|
||
if (c & 0x00000200) != 0 {
|
||
rval |= SSSE3
|
||
}
|
||
if (c & 0x00080000) != 0 {
|
||
rval |= SSE4
|
||
}
|
||
if (c & 0x00100000) != 0 {
|
||
rval |= SSE42
|
||
}
|
||
if (c & (1 << 25)) != 0 {
|
||
rval |= AESNI
|
||
}
|
||
if (c & (1 << 1)) != 0 {
|
||
rval |= CLMUL
|
||
}
|
||
if c&(1<<23) != 0 {
|
||
rval |= POPCNT
|
||
}
|
||
if c&(1<<30) != 0 {
|
||
rval |= RDRAND
|
||
}
|
||
if c&(1<<29) != 0 {
|
||
rval |= F16C
|
||
}
|
||
if c&(1<<13) != 0 {
|
||
rval |= CX16
|
||
}
|
||
if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
|
||
if threadsPerCore() > 1 {
|
||
rval |= HTT
|
||
}
|
||
}
|
||
if vend == AMD && (d&(1<<28)) != 0 && mfi >= 4 {
|
||
if threadsPerCore() > 1 {
|
||
rval |= HTT
|
||
}
|
||
}
|
||
// Check XGETBV, OXSAVE and AVX bits
|
||
if c&(1<<26) != 0 && c&(1<<27) != 0 && c&(1<<28) != 0 {
|
||
// Check for OS support
|
||
eax, _ := xgetbv(0)
|
||
if (eax & 0x6) == 0x6 {
|
||
rval |= AVX
|
||
if (c & 0x00001000) != 0 {
|
||
rval |= FMA3
|
||
}
|
||
}
|
||
}
|
||
|
||
// Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
|
||
if mfi >= 7 {
|
||
_, ebx, ecx, edx := cpuidex(7, 0)
|
||
eax1, _, _, _ := cpuidex(7, 1)
|
||
if (rval&AVX) != 0 && (ebx&0x00000020) != 0 {
|
||
rval |= AVX2
|
||
}
|
||
if (ebx & 0x00000008) != 0 {
|
||
rval |= BMI1
|
||
if (ebx & 0x00000100) != 0 {
|
||
rval |= BMI2
|
||
}
|
||
}
|
||
if ebx&(1<<2) != 0 {
|
||
rval |= SGX
|
||
}
|
||
if ebx&(1<<4) != 0 {
|
||
rval |= HLE
|
||
}
|
||
if ebx&(1<<9) != 0 {
|
||
rval |= ERMS
|
||
}
|
||
if ebx&(1<<11) != 0 {
|
||
rval |= RTM
|
||
}
|
||
if ebx&(1<<14) != 0 {
|
||
rval |= MPX
|
||
}
|
||
if ebx&(1<<18) != 0 {
|
||
rval |= RDSEED
|
||
}
|
||
if ebx&(1<<19) != 0 {
|
||
rval |= ADX
|
||
}
|
||
if ebx&(1<<29) != 0 {
|
||
rval |= SHA
|
||
}
|
||
if edx&(1<<26) != 0 {
|
||
rval |= IBPB
|
||
}
|
||
if ecx&(1<<30) != 0 {
|
||
rval |= SGXLC
|
||
}
|
||
if edx&(1<<27) != 0 {
|
||
rval |= STIBP
|
||
}
|
||
|
||
// Only detect AVX-512 features if XGETBV is supported
|
||
if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
|
||
// Check for OS support
|
||
eax, _ := xgetbv(0)
|
||
|
||
// Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
|
||
// ZMM16-ZMM31 state are enabled by OS)
|
||
/// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
|
||
if (eax>>5)&7 == 7 && (eax>>1)&3 == 3 {
|
||
if ebx&(1<<16) != 0 {
|
||
rval |= AVX512F
|
||
}
|
||
if ebx&(1<<17) != 0 {
|
||
rval |= AVX512DQ
|
||
}
|
||
if ebx&(1<<21) != 0 {
|
||
rval |= AVX512IFMA
|
||
}
|
||
if ebx&(1<<26) != 0 {
|
||
rval |= AVX512PF
|
||
}
|
||
if ebx&(1<<27) != 0 {
|
||
rval |= AVX512ER
|
||
}
|
||
if ebx&(1<<28) != 0 {
|
||
rval |= AVX512CD
|
||
}
|
||
if ebx&(1<<30) != 0 {
|
||
rval |= AVX512BW
|
||
}
|
||
if ebx&(1<<31) != 0 {
|
||
rval |= AVX512VL
|
||
}
|
||
// ecx
|
||
if ecx&(1<<1) != 0 {
|
||
rval |= AVX512VBMI
|
||
}
|
||
if ecx&(1<<6) != 0 {
|
||
rval |= AVX512VBMI2
|
||
}
|
||
if ecx&(1<<8) != 0 {
|
||
rval |= GFNI
|
||
}
|
||
if ecx&(1<<9) != 0 {
|
||
rval |= VAES
|
||
}
|
||
if ecx&(1<<10) != 0 {
|
||
rval |= VPCLMULQDQ
|
||
}
|
||
if ecx&(1<<11) != 0 {
|
||
rval |= AVX512VNNI
|
||
}
|
||
if ecx&(1<<12) != 0 {
|
||
rval |= AVX512BITALG
|
||
}
|
||
if ecx&(1<<14) != 0 {
|
||
rval |= AVX512VPOPCNTDQ
|
||
}
|
||
// edx
|
||
if edx&(1<<8) != 0 {
|
||
rval |= AVX512VP2INTERSECT
|
||
}
|
||
// cpuid eax 07h,ecx=1
|
||
if eax1&(1<<5) != 0 {
|
||
rval |= AVX512BF16
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if maxExtendedFunction() >= 0x80000001 {
|
||
_, _, c, d := cpuid(0x80000001)
|
||
if (c & (1 << 5)) != 0 {
|
||
rval |= LZCNT
|
||
rval |= POPCNT
|
||
}
|
||
if (d & (1 << 31)) != 0 {
|
||
rval |= AMD3DNOW
|
||
}
|
||
if (d & (1 << 30)) != 0 {
|
||
rval |= AMD3DNOWEXT
|
||
}
|
||
if (d & (1 << 23)) != 0 {
|
||
rval |= MMX
|
||
}
|
||
if (d & (1 << 22)) != 0 {
|
||
rval |= MMXEXT
|
||
}
|
||
if (c & (1 << 6)) != 0 {
|
||
rval |= SSE4A
|
||
}
|
||
if d&(1<<20) != 0 {
|
||
rval |= NX
|
||
}
|
||
if d&(1<<27) != 0 {
|
||
rval |= RDTSCP
|
||
}
|
||
|
||
/* Allow for selectively disabling SSE2 functions on AMD processors
|
||
with SSE2 support but not SSE4a. This includes Athlon64, some
|
||
Opteron, and some Sempron processors. MMX, SSE, or 3DNow! are faster
|
||
than SSE2 often enough to utilize this special-case flag.
|
||
AV_CPU_FLAG_SSE2 and AV_CPU_FLAG_SSE2SLOW are both set in this case
|
||
so that SSE2 is used unless explicitly disabled by checking
|
||
AV_CPU_FLAG_SSE2SLOW. */
|
||
if vend != Intel &&
|
||
rval&SSE2 != 0 && (c&0x00000040) == 0 {
|
||
rval |= SSE2SLOW
|
||
}
|
||
|
||
/* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
|
||
* used unless the OS has AVX support. */
|
||
if (rval & AVX) != 0 {
|
||
if (c & 0x00000800) != 0 {
|
||
rval |= XOP
|
||
}
|
||
if (c & 0x00010000) != 0 {
|
||
rval |= FMA4
|
||
}
|
||
}
|
||
|
||
if vend == Intel {
|
||
family, model := familyModel()
|
||
if family == 6 && (model == 9 || model == 13 || model == 14) {
|
||
/* 6/9 (pentium-m "banias"), 6/13 (pentium-m "dothan"), and
|
||
* 6/14 (core1 "yonah") theoretically support sse2, but it's
|
||
* usually slower than mmx. */
|
||
if (rval & SSE2) != 0 {
|
||
rval |= SSE2SLOW
|
||
}
|
||
if (rval & SSE3) != 0 {
|
||
rval |= SSE3SLOW
|
||
}
|
||
}
|
||
/* The Atom processor has SSSE3 support, which is useful in many cases,
|
||
* but sometimes the SSSE3 version is slower than the SSE2 equivalent
|
||
* on the Atom, but is generally faster on other processors supporting
|
||
* SSSE3. This flag allows for selectively disabling certain SSSE3
|
||
* functions on the Atom. */
|
||
if family == 6 && model == 28 {
|
||
rval |= ATOM
|
||
}
|
||
}
|
||
}
|
||
return Flags(rval)
|
||
}
|
||
|
||
func valAsString(values ...uint32) []byte {
|
||
r := make([]byte, 4*len(values))
|
||
for i, v := range values {
|
||
dst := r[i*4:]
|
||
dst[0] = byte(v & 0xff)
|
||
dst[1] = byte((v >> 8) & 0xff)
|
||
dst[2] = byte((v >> 16) & 0xff)
|
||
dst[3] = byte((v >> 24) & 0xff)
|
||
switch {
|
||
case dst[0] == 0:
|
||
return r[:i*4]
|
||
case dst[1] == 0:
|
||
return r[:i*4+1]
|
||
case dst[2] == 0:
|
||
return r[:i*4+2]
|
||
case dst[3] == 0:
|
||
return r[:i*4+3]
|
||
}
|
||
}
|
||
return r
|
||
}
|
||
|
||
// Single-precision and double-precision floating point
|
||
func (c CPUInfo) ArmFP() bool {
|
||
return c.Arm&FP != 0
|
||
}
|
||
|
||
// Advanced SIMD
|
||
func (c CPUInfo) ArmASIMD() bool {
|
||
return c.Arm&ASIMD != 0
|
||
}
|
||
|
||
// Generic timer
|
||
func (c CPUInfo) ArmEVTSTRM() bool {
|
||
return c.Arm&EVTSTRM != 0
|
||
}
|
||
|
||
// AES instructions
|
||
func (c CPUInfo) ArmAES() bool {
|
||
return c.Arm&AES != 0
|
||
}
|
||
|
||
// Polynomial Multiply instructions (PMULL/PMULL2)
|
||
func (c CPUInfo) ArmPMULL() bool {
|
||
return c.Arm&PMULL != 0
|
||
}
|
||
|
||
// SHA-1 instructions (SHA1C, etc)
|
||
func (c CPUInfo) ArmSHA1() bool {
|
||
return c.Arm&SHA1 != 0
|
||
}
|
||
|
||
// SHA-2 instructions (SHA256H, etc)
|
||
func (c CPUInfo) ArmSHA2() bool {
|
||
return c.Arm&SHA2 != 0
|
||
}
|
||
|
||
// CRC32/CRC32C instructions
|
||
func (c CPUInfo) ArmCRC32() bool {
|
||
return c.Arm&CRC32 != 0
|
||
}
|
||
|
||
// Large System Extensions (LSE)
|
||
func (c CPUInfo) ArmATOMICS() bool {
|
||
return c.Arm&ATOMICS != 0
|
||
}
|
||
|
||
// Half-precision floating point
|
||
func (c CPUInfo) ArmFPHP() bool {
|
||
return c.Arm&FPHP != 0
|
||
}
|
||
|
||
// Advanced SIMD half-precision floating point
|
||
func (c CPUInfo) ArmASIMDHP() bool {
|
||
return c.Arm&ASIMDHP != 0
|
||
}
|
||
|
||
// Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
|
||
func (c CPUInfo) ArmASIMDRDM() bool {
|
||
return c.Arm&ASIMDRDM != 0
|
||
}
|
||
|
||
// Javascript-style double->int convert (FJCVTZS)
|
||
func (c CPUInfo) ArmJSCVT() bool {
|
||
return c.Arm&JSCVT != 0
|
||
}
|
||
|
||
// Floatin point complex number addition and multiplication
|
||
func (c CPUInfo) ArmFCMA() bool {
|
||
return c.Arm&FCMA != 0
|
||
}
|
||
|
||
// Weaker release consistency (LDAPR, etc)
|
||
func (c CPUInfo) ArmLRCPC() bool {
|
||
return c.Arm&LRCPC != 0
|
||
}
|
||
|
||
// Data cache clean to Point of Persistence (DC CVAP)
|
||
func (c CPUInfo) ArmDCPOP() bool {
|
||
return c.Arm&DCPOP != 0
|
||
}
|
||
|
||
// SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
|
||
func (c CPUInfo) ArmSHA3() bool {
|
||
return c.Arm&SHA3 != 0
|
||
}
|
||
|
||
// SM3 instructions
|
||
func (c CPUInfo) ArmSM3() bool {
|
||
return c.Arm&SM3 != 0
|
||
}
|
||
|
||
// SM4 instructions
|
||
func (c CPUInfo) ArmSM4() bool {
|
||
return c.Arm&SM4 != 0
|
||
}
|
||
|
||
// SIMD Dot Product
|
||
func (c CPUInfo) ArmASIMDDP() bool {
|
||
return c.Arm&ASIMDDP != 0
|
||
}
|
||
|
||
// SHA512 instructions
|
||
func (c CPUInfo) ArmSHA512() bool {
|
||
return c.Arm&SHA512 != 0
|
||
}
|
||
|
||
// Scalable Vector Extension
|
||
func (c CPUInfo) ArmSVE() bool {
|
||
return c.Arm&SVE != 0
|
||
}
|
||
|
||
// Generic Pointer Authentication
|
||
func (c CPUInfo) ArmGPA() bool {
|
||
return c.Arm&GPA != 0
|
||
}
|