mirror of
https://codeberg.org/superseriousbusiness/gotosocial.git
synced 2025-01-08 01:07:22 +03:00
a5c920a50b
Signed-off-by: kim <grufwub@gmail.com>
1419 lines
47 KiB
Go
1419 lines
47 KiB
Go
// Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
|
||
|
||
// Package cpuid provides information about the CPU running the current program.
|
||
//
|
||
// CPU features are detected on startup, and kept for fast access through the life of the application.
|
||
// Currently x86 / x64 (AMD64) as well as arm64 is supported.
|
||
//
|
||
// You can access the CPU information by accessing the shared CPU variable of the cpuid library.
|
||
//
|
||
// Package home: https://github.com/klauspost/cpuid
|
||
package cpuid
|
||
|
||
import (
|
||
"flag"
|
||
"fmt"
|
||
"math"
|
||
"math/bits"
|
||
"os"
|
||
"runtime"
|
||
"strings"
|
||
)
|
||
|
||
// AMD refererence: https://www.amd.com/system/files/TechDocs/25481.pdf
|
||
// and Processor Programming Reference (PPR)
|
||
|
||
// Vendor is a representation of a CPU vendor.
|
||
type Vendor int
|
||
|
||
const (
|
||
VendorUnknown Vendor = iota
|
||
Intel
|
||
AMD
|
||
VIA
|
||
Transmeta
|
||
NSC
|
||
KVM // Kernel-based Virtual Machine
|
||
MSVM // Microsoft Hyper-V or Windows Virtual PC
|
||
VMware
|
||
XenHVM
|
||
Bhyve
|
||
Hygon
|
||
SiS
|
||
RDC
|
||
|
||
Ampere
|
||
ARM
|
||
Broadcom
|
||
Cavium
|
||
DEC
|
||
Fujitsu
|
||
Infineon
|
||
Motorola
|
||
NVIDIA
|
||
AMCC
|
||
Qualcomm
|
||
Marvell
|
||
|
||
lastVendor
|
||
)
|
||
|
||
//go:generate stringer -type=FeatureID,Vendor
|
||
|
||
// FeatureID is the ID of a specific cpu feature.
|
||
type FeatureID int
|
||
|
||
const (
|
||
// Keep index -1 as unknown
|
||
UNKNOWN = -1
|
||
|
||
// Add features
|
||
ADX FeatureID = iota // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
|
||
AESNI // Advanced Encryption Standard New Instructions
|
||
AMD3DNOW // AMD 3DNOW
|
||
AMD3DNOWEXT // AMD 3DNowExt
|
||
AMXBF16 // Tile computational operations on BFLOAT16 numbers
|
||
AMXFP16 // Tile computational operations on FP16 numbers
|
||
AMXINT8 // Tile computational operations on 8-bit integers
|
||
AMXTILE // Tile architecture
|
||
AVX // AVX functions
|
||
AVX2 // AVX2 functions
|
||
AVX512BF16 // AVX-512 BFLOAT16 Instructions
|
||
AVX512BITALG // AVX-512 Bit Algorithms
|
||
AVX512BW // AVX-512 Byte and Word Instructions
|
||
AVX512CD // AVX-512 Conflict Detection Instructions
|
||
AVX512DQ // AVX-512 Doubleword and Quadword Instructions
|
||
AVX512ER // AVX-512 Exponential and Reciprocal Instructions
|
||
AVX512F // AVX-512 Foundation
|
||
AVX512FP16 // AVX-512 FP16 Instructions
|
||
AVX512IFMA // AVX-512 Integer Fused Multiply-Add Instructions
|
||
AVX512PF // AVX-512 Prefetch Instructions
|
||
AVX512VBMI // AVX-512 Vector Bit Manipulation Instructions
|
||
AVX512VBMI2 // AVX-512 Vector Bit Manipulation Instructions, Version 2
|
||
AVX512VL // AVX-512 Vector Length Extensions
|
||
AVX512VNNI // AVX-512 Vector Neural Network Instructions
|
||
AVX512VP2INTERSECT // AVX-512 Intersect for D/Q
|
||
AVX512VPOPCNTDQ // AVX-512 Vector Population Count Doubleword and Quadword
|
||
AVXIFMA // AVX-IFMA instructions
|
||
AVXNECONVERT // AVX-NE-CONVERT instructions
|
||
AVXSLOW // Indicates the CPU performs 2 128 bit operations instead of one
|
||
AVXVNNI // AVX (VEX encoded) VNNI neural network instructions
|
||
AVXVNNIINT8 // AVX-VNNI-INT8 instructions
|
||
BHI_CTRL // Branch History Injection and Intra-mode Branch Target Injection / CVE-2022-0001, CVE-2022-0002 / INTEL-SA-00598
|
||
BMI1 // Bit Manipulation Instruction Set 1
|
||
BMI2 // Bit Manipulation Instruction Set 2
|
||
CETIBT // Intel CET Indirect Branch Tracking
|
||
CETSS // Intel CET Shadow Stack
|
||
CLDEMOTE // Cache Line Demote
|
||
CLMUL // Carry-less Multiplication
|
||
CLZERO // CLZERO instruction supported
|
||
CMOV // i686 CMOV
|
||
CMPCCXADD // CMPCCXADD instructions
|
||
CMPSB_SCADBS_SHORT // Fast short CMPSB and SCASB
|
||
CMPXCHG8 // CMPXCHG8 instruction
|
||
CPBOOST // Core Performance Boost
|
||
CPPC // AMD: Collaborative Processor Performance Control
|
||
CX16 // CMPXCHG16B Instruction
|
||
EFER_LMSLE_UNS // AMD: =Core::X86::Msr::EFER[LMSLE] is not supported, and MBZ
|
||
ENQCMD // Enqueue Command
|
||
ERMS // Enhanced REP MOVSB/STOSB
|
||
F16C // Half-precision floating-point conversion
|
||
FLUSH_L1D // Flush L1D cache
|
||
FMA3 // Intel FMA 3. Does not imply AVX.
|
||
FMA4 // Bulldozer FMA4 functions
|
||
FP128 // AMD: When set, the internal FP/SIMD execution datapath is no more than 128-bits wide
|
||
FP256 // AMD: When set, the internal FP/SIMD execution datapath is no more than 256-bits wide
|
||
FSRM // Fast Short Rep Mov
|
||
FXSR // FXSAVE, FXRESTOR instructions, CR4 bit 9
|
||
FXSROPT // FXSAVE/FXRSTOR optimizations
|
||
GFNI // Galois Field New Instructions. May require other features (AVX, AVX512VL,AVX512F) based on usage.
|
||
HLE // Hardware Lock Elision
|
||
HRESET // If set CPU supports history reset and the IA32_HRESET_ENABLE MSR
|
||
HTT // Hyperthreading (enabled)
|
||
HWA // Hardware assert supported. Indicates support for MSRC001_10
|
||
HYBRID_CPU // This part has CPUs of more than one type.
|
||
HYPERVISOR // This bit has been reserved by Intel & AMD for use by hypervisors
|
||
IA32_ARCH_CAP // IA32_ARCH_CAPABILITIES MSR (Intel)
|
||
IA32_CORE_CAP // IA32_CORE_CAPABILITIES MSR
|
||
IBPB // Indirect Branch Restricted Speculation (IBRS) and Indirect Branch Predictor Barrier (IBPB)
|
||
IBRS // AMD: Indirect Branch Restricted Speculation
|
||
IBRS_PREFERRED // AMD: IBRS is preferred over software solution
|
||
IBRS_PROVIDES_SMP // AMD: IBRS provides Same Mode Protection
|
||
IBS // Instruction Based Sampling (AMD)
|
||
IBSBRNTRGT // Instruction Based Sampling Feature (AMD)
|
||
IBSFETCHSAM // Instruction Based Sampling Feature (AMD)
|
||
IBSFFV // Instruction Based Sampling Feature (AMD)
|
||
IBSOPCNT // Instruction Based Sampling Feature (AMD)
|
||
IBSOPCNTEXT // Instruction Based Sampling Feature (AMD)
|
||
IBSOPSAM // Instruction Based Sampling Feature (AMD)
|
||
IBSRDWROPCNT // Instruction Based Sampling Feature (AMD)
|
||
IBSRIPINVALIDCHK // Instruction Based Sampling Feature (AMD)
|
||
IBS_FETCH_CTLX // AMD: IBS fetch control extended MSR supported
|
||
IBS_OPDATA4 // AMD: IBS op data 4 MSR supported
|
||
IBS_OPFUSE // AMD: Indicates support for IbsOpFuse
|
||
IBS_PREVENTHOST // Disallowing IBS use by the host supported
|
||
IBS_ZEN4 // AMD: Fetch and Op IBS support IBS extensions added with Zen4
|
||
IDPRED_CTRL // IPRED_DIS
|
||
INT_WBINVD // WBINVD/WBNOINVD are interruptible.
|
||
INVLPGB // NVLPGB and TLBSYNC instruction supported
|
||
LAHF // LAHF/SAHF in long mode
|
||
LAM // If set, CPU supports Linear Address Masking
|
||
LBRVIRT // LBR virtualization
|
||
LZCNT // LZCNT instruction
|
||
MCAOVERFLOW // MCA overflow recovery support.
|
||
MCDT_NO // Processor do not exhibit MXCSR Configuration Dependent Timing behavior and do not need to mitigate it.
|
||
MCOMMIT // MCOMMIT instruction supported
|
||
MD_CLEAR // VERW clears CPU buffers
|
||
MMX // standard MMX
|
||
MMXEXT // SSE integer functions or AMD MMX ext
|
||
MOVBE // MOVBE instruction (big-endian)
|
||
MOVDIR64B // Move 64 Bytes as Direct Store
|
||
MOVDIRI // Move Doubleword as Direct Store
|
||
MOVSB_ZL // Fast Zero-Length MOVSB
|
||
MOVU // AMD: MOVU SSE instructions are more efficient and should be preferred to SSE MOVL/MOVH. MOVUPS is more efficient than MOVLPS/MOVHPS. MOVUPD is more efficient than MOVLPD/MOVHPD
|
||
MPX // Intel MPX (Memory Protection Extensions)
|
||
MSRIRC // Instruction Retired Counter MSR available
|
||
MSRLIST // Read/Write List of Model Specific Registers
|
||
MSR_PAGEFLUSH // Page Flush MSR available
|
||
NRIPS // Indicates support for NRIP save on VMEXIT
|
||
NX // NX (No-Execute) bit
|
||
OSXSAVE // XSAVE enabled by OS
|
||
PCONFIG // PCONFIG for Intel Multi-Key Total Memory Encryption
|
||
POPCNT // POPCNT instruction
|
||
PPIN // AMD: Protected Processor Inventory Number support. Indicates that Protected Processor Inventory Number (PPIN) capability can be enabled
|
||
PREFETCHI // PREFETCHIT0/1 instructions
|
||
PSFD // Predictive Store Forward Disable
|
||
RDPRU // RDPRU instruction supported
|
||
RDRAND // RDRAND instruction is available
|
||
RDSEED // RDSEED instruction is available
|
||
RDTSCP // RDTSCP Instruction
|
||
RRSBA_CTRL // Restricted RSB Alternate
|
||
RTM // Restricted Transactional Memory
|
||
RTM_ALWAYS_ABORT // Indicates that the loaded microcode is forcing RTM abort.
|
||
SERIALIZE // Serialize Instruction Execution
|
||
SEV // AMD Secure Encrypted Virtualization supported
|
||
SEV_64BIT // AMD SEV guest execution only allowed from a 64-bit host
|
||
SEV_ALTERNATIVE // AMD SEV Alternate Injection supported
|
||
SEV_DEBUGSWAP // Full debug state swap supported for SEV-ES guests
|
||
SEV_ES // AMD SEV Encrypted State supported
|
||
SEV_RESTRICTED // AMD SEV Restricted Injection supported
|
||
SEV_SNP // AMD SEV Secure Nested Paging supported
|
||
SGX // Software Guard Extensions
|
||
SGXLC // Software Guard Extensions Launch Control
|
||
SHA // Intel SHA Extensions
|
||
SME // AMD Secure Memory Encryption supported
|
||
SME_COHERENT // AMD Hardware cache coherency across encryption domains enforced
|
||
SPEC_CTRL_SSBD // Speculative Store Bypass Disable
|
||
SRBDS_CTRL // SRBDS mitigation MSR available
|
||
SSE // SSE functions
|
||
SSE2 // P4 SSE functions
|
||
SSE3 // Prescott SSE3 functions
|
||
SSE4 // Penryn SSE4.1 functions
|
||
SSE42 // Nehalem SSE4.2 functions
|
||
SSE4A // AMD Barcelona microarchitecture SSE4a instructions
|
||
SSSE3 // Conroe SSSE3 functions
|
||
STIBP // Single Thread Indirect Branch Predictors
|
||
STIBP_ALWAYSON // AMD: Single Thread Indirect Branch Prediction Mode has Enhanced Performance and may be left Always On
|
||
STOSB_SHORT // Fast short STOSB
|
||
SUCCOR // Software uncorrectable error containment and recovery capability.
|
||
SVM // AMD Secure Virtual Machine
|
||
SVMDA // Indicates support for the SVM decode assists.
|
||
SVMFBASID // SVM, Indicates that TLB flush events, including CR3 writes and CR4.PGE toggles, flush only the current ASID's TLB entries. Also indicates support for the extended VMCBTLB_Control
|
||
SVML // AMD SVM lock. Indicates support for SVM-Lock.
|
||
SVMNP // AMD SVM nested paging
|
||
SVMPF // SVM pause intercept filter. Indicates support for the pause intercept filter
|
||
SVMPFT // SVM PAUSE filter threshold. Indicates support for the PAUSE filter cycle count threshold
|
||
SYSCALL // System-Call Extension (SCE): SYSCALL and SYSRET instructions.
|
||
SYSEE // SYSENTER and SYSEXIT instructions
|
||
TBM // AMD Trailing Bit Manipulation
|
||
TLB_FLUSH_NESTED // AMD: Flushing includes all the nested translations for guest translations
|
||
TME // Intel Total Memory Encryption. The following MSRs are supported: IA32_TME_CAPABILITY, IA32_TME_ACTIVATE, IA32_TME_EXCLUDE_MASK, and IA32_TME_EXCLUDE_BASE.
|
||
TOPEXT // TopologyExtensions: topology extensions support. Indicates support for CPUID Fn8000_001D_EAX_x[N:0]-CPUID Fn8000_001E_EDX.
|
||
TSCRATEMSR // MSR based TSC rate control. Indicates support for MSR TSC ratio MSRC000_0104
|
||
TSXLDTRK // Intel TSX Suspend Load Address Tracking
|
||
VAES // Vector AES. AVX(512) versions requires additional checks.
|
||
VMCBCLEAN // VMCB clean bits. Indicates support for VMCB clean bits.
|
||
VMPL // AMD VM Permission Levels supported
|
||
VMSA_REGPROT // AMD VMSA Register Protection supported
|
||
VMX // Virtual Machine Extensions
|
||
VPCLMULQDQ // Carry-Less Multiplication Quadword. Requires AVX for 3 register versions.
|
||
VTE // AMD Virtual Transparent Encryption supported
|
||
WAITPKG // TPAUSE, UMONITOR, UMWAIT
|
||
WBNOINVD // Write Back and Do Not Invalidate Cache
|
||
WRMSRNS // Non-Serializing Write to Model Specific Register
|
||
X87 // FPU
|
||
XGETBV1 // Supports XGETBV with ECX = 1
|
||
XOP // Bulldozer XOP functions
|
||
XSAVE // XSAVE, XRESTOR, XSETBV, XGETBV
|
||
XSAVEC // Supports XSAVEC and the compacted form of XRSTOR.
|
||
XSAVEOPT // XSAVEOPT available
|
||
XSAVES // Supports XSAVES/XRSTORS and IA32_XSS
|
||
|
||
// ARM features:
|
||
AESARM // AES instructions
|
||
ARMCPUID // Some CPU ID registers readable at user-level
|
||
ASIMD // Advanced SIMD
|
||
ASIMDDP // SIMD Dot Product
|
||
ASIMDHP // Advanced SIMD half-precision floating point
|
||
ASIMDRDM // Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
|
||
ATOMICS // Large System Extensions (LSE)
|
||
CRC32 // CRC32/CRC32C instructions
|
||
DCPOP // Data cache clean to Point of Persistence (DC CVAP)
|
||
EVTSTRM // Generic timer
|
||
FCMA // Floatin point complex number addition and multiplication
|
||
FP // Single-precision and double-precision floating point
|
||
FPHP // Half-precision floating point
|
||
GPA // Generic Pointer Authentication
|
||
JSCVT // Javascript-style double->int convert (FJCVTZS)
|
||
LRCPC // Weaker release consistency (LDAPR, etc)
|
||
PMULL // Polynomial Multiply instructions (PMULL/PMULL2)
|
||
SHA1 // SHA-1 instructions (SHA1C, etc)
|
||
SHA2 // SHA-2 instructions (SHA256H, etc)
|
||
SHA3 // SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
|
||
SHA512 // SHA512 instructions
|
||
SM3 // SM3 instructions
|
||
SM4 // SM4 instructions
|
||
SVE // Scalable Vector Extension
|
||
// Keep it last. It automatically defines the size of []flagSet
|
||
lastID
|
||
|
||
firstID FeatureID = UNKNOWN + 1
|
||
)
|
||
|
||
// CPUInfo contains information about the detected system CPU.
|
||
type CPUInfo struct {
|
||
BrandName string // Brand name reported by the CPU
|
||
VendorID Vendor // Comparable CPU vendor ID
|
||
VendorString string // Raw vendor string.
|
||
featureSet flagSet // Features of the CPU
|
||
PhysicalCores int // Number of physical processor cores in your CPU. Will be 0 if undetectable.
|
||
ThreadsPerCore int // Number of threads per physical core. Will be 1 if undetectable.
|
||
LogicalCores int // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
|
||
Family int // CPU family number
|
||
Model int // CPU model number
|
||
Stepping int // CPU stepping info
|
||
CacheLine int // Cache line size in bytes. Will be 0 if undetectable.
|
||
Hz int64 // Clock speed, if known, 0 otherwise. Will attempt to contain base clock speed.
|
||
BoostFreq int64 // Max clock speed, if known, 0 otherwise
|
||
Cache struct {
|
||
L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
|
||
L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
|
||
L2 int // L2 Cache (per core or shared). Will be -1 if undetected
|
||
L3 int // L3 Cache (per core, per ccx or shared). Will be -1 if undetected
|
||
}
|
||
SGX SGXSupport
|
||
maxFunc uint32
|
||
maxExFunc uint32
|
||
}
|
||
|
||
var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
|
||
var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
|
||
var xgetbv func(index uint32) (eax, edx uint32)
|
||
var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
|
||
var darwinHasAVX512 = func() bool { return false }
|
||
|
||
// CPU contains information about the CPU as detected on startup,
|
||
// or when Detect last was called.
|
||
//
|
||
// Use this as the primary entry point to you data.
|
||
var CPU CPUInfo
|
||
|
||
func init() {
|
||
initCPU()
|
||
Detect()
|
||
}
|
||
|
||
// Detect will re-detect current CPU info.
|
||
// This will replace the content of the exported CPU variable.
|
||
//
|
||
// Unless you expect the CPU to change while you are running your program
|
||
// you should not need to call this function.
|
||
// If you call this, you must ensure that no other goroutine is accessing the
|
||
// exported CPU variable.
|
||
func Detect() {
|
||
// Set defaults
|
||
CPU.ThreadsPerCore = 1
|
||
CPU.Cache.L1I = -1
|
||
CPU.Cache.L1D = -1
|
||
CPU.Cache.L2 = -1
|
||
CPU.Cache.L3 = -1
|
||
safe := true
|
||
if detectArmFlag != nil {
|
||
safe = !*detectArmFlag
|
||
}
|
||
addInfo(&CPU, safe)
|
||
if displayFeats != nil && *displayFeats {
|
||
fmt.Println("cpu features:", strings.Join(CPU.FeatureSet(), ","))
|
||
// Exit with non-zero so tests will print value.
|
||
os.Exit(1)
|
||
}
|
||
if disableFlag != nil {
|
||
s := strings.Split(*disableFlag, ",")
|
||
for _, feat := range s {
|
||
feat := ParseFeature(strings.TrimSpace(feat))
|
||
if feat != UNKNOWN {
|
||
CPU.featureSet.unset(feat)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// DetectARM will detect ARM64 features.
|
||
// This is NOT done automatically since it can potentially crash
|
||
// if the OS does not handle the command.
|
||
// If in the future this can be done safely this function may not
|
||
// do anything.
|
||
func DetectARM() {
|
||
addInfo(&CPU, false)
|
||
}
|
||
|
||
var detectArmFlag *bool
|
||
var displayFeats *bool
|
||
var disableFlag *string
|
||
|
||
// Flags will enable flags.
|
||
// This must be called *before* flag.Parse AND
|
||
// Detect must be called after the flags have been parsed.
|
||
// Note that this means that any detection used in init() functions
|
||
// will not contain these flags.
|
||
func Flags() {
|
||
disableFlag = flag.String("cpu.disable", "", "disable cpu features; comma separated list")
|
||
displayFeats = flag.Bool("cpu.features", false, "lists cpu features and exits")
|
||
detectArmFlag = flag.Bool("cpu.arm", false, "allow ARM features to be detected; can potentially crash")
|
||
}
|
||
|
||
// Supports returns whether the CPU supports all of the requested features.
|
||
func (c CPUInfo) Supports(ids ...FeatureID) bool {
|
||
for _, id := range ids {
|
||
if !c.featureSet.inSet(id) {
|
||
return false
|
||
}
|
||
}
|
||
return true
|
||
}
|
||
|
||
// Has allows for checking a single feature.
|
||
// Should be inlined by the compiler.
|
||
func (c *CPUInfo) Has(id FeatureID) bool {
|
||
return c.featureSet.inSet(id)
|
||
}
|
||
|
||
// AnyOf returns whether the CPU supports one or more of the requested features.
|
||
func (c CPUInfo) AnyOf(ids ...FeatureID) bool {
|
||
for _, id := range ids {
|
||
if c.featureSet.inSet(id) {
|
||
return true
|
||
}
|
||
}
|
||
return false
|
||
}
|
||
|
||
// Features contains several features combined for a fast check using
|
||
// CpuInfo.HasAll
|
||
type Features *flagSet
|
||
|
||
// CombineFeatures allows to combine several features for a close to constant time lookup.
|
||
func CombineFeatures(ids ...FeatureID) Features {
|
||
var v flagSet
|
||
for _, id := range ids {
|
||
v.set(id)
|
||
}
|
||
return &v
|
||
}
|
||
|
||
func (c *CPUInfo) HasAll(f Features) bool {
|
||
return c.featureSet.hasSetP(f)
|
||
}
|
||
|
||
// https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
|
||
var oneOfLevel = CombineFeatures(SYSEE, SYSCALL)
|
||
var level1Features = CombineFeatures(CMOV, CMPXCHG8, X87, FXSR, MMX, SSE, SSE2)
|
||
var level2Features = CombineFeatures(CMOV, CMPXCHG8, X87, FXSR, MMX, SSE, SSE2, CX16, LAHF, POPCNT, SSE3, SSE4, SSE42, SSSE3)
|
||
var level3Features = CombineFeatures(CMOV, CMPXCHG8, X87, FXSR, MMX, SSE, SSE2, CX16, LAHF, POPCNT, SSE3, SSE4, SSE42, SSSE3, AVX, AVX2, BMI1, BMI2, F16C, FMA3, LZCNT, MOVBE, OSXSAVE)
|
||
var level4Features = CombineFeatures(CMOV, CMPXCHG8, X87, FXSR, MMX, SSE, SSE2, CX16, LAHF, POPCNT, SSE3, SSE4, SSE42, SSSE3, AVX, AVX2, BMI1, BMI2, F16C, FMA3, LZCNT, MOVBE, OSXSAVE, AVX512F, AVX512BW, AVX512CD, AVX512DQ, AVX512VL)
|
||
|
||
// X64Level returns the microarchitecture level detected on the CPU.
|
||
// If features are lacking or non x64 mode, 0 is returned.
|
||
// See https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
|
||
func (c CPUInfo) X64Level() int {
|
||
if !c.featureSet.hasOneOf(oneOfLevel) {
|
||
return 0
|
||
}
|
||
if c.featureSet.hasSetP(level4Features) {
|
||
return 4
|
||
}
|
||
if c.featureSet.hasSetP(level3Features) {
|
||
return 3
|
||
}
|
||
if c.featureSet.hasSetP(level2Features) {
|
||
return 2
|
||
}
|
||
if c.featureSet.hasSetP(level1Features) {
|
||
return 1
|
||
}
|
||
return 0
|
||
}
|
||
|
||
// Disable will disable one or several features.
|
||
func (c *CPUInfo) Disable(ids ...FeatureID) bool {
|
||
for _, id := range ids {
|
||
c.featureSet.unset(id)
|
||
}
|
||
return true
|
||
}
|
||
|
||
// Enable will disable one or several features even if they were undetected.
|
||
// This is of course not recommended for obvious reasons.
|
||
func (c *CPUInfo) Enable(ids ...FeatureID) bool {
|
||
for _, id := range ids {
|
||
c.featureSet.set(id)
|
||
}
|
||
return true
|
||
}
|
||
|
||
// IsVendor returns true if vendor is recognized as Intel
|
||
func (c CPUInfo) IsVendor(v Vendor) bool {
|
||
return c.VendorID == v
|
||
}
|
||
|
||
// FeatureSet returns all available features as strings.
|
||
func (c CPUInfo) FeatureSet() []string {
|
||
s := make([]string, 0, c.featureSet.nEnabled())
|
||
s = append(s, c.featureSet.Strings()...)
|
||
return s
|
||
}
|
||
|
||
// RTCounter returns the 64-bit time-stamp counter
|
||
// Uses the RDTSCP instruction. The value 0 is returned
|
||
// if the CPU does not support the instruction.
|
||
func (c CPUInfo) RTCounter() uint64 {
|
||
if !c.Supports(RDTSCP) {
|
||
return 0
|
||
}
|
||
a, _, _, d := rdtscpAsm()
|
||
return uint64(a) | (uint64(d) << 32)
|
||
}
|
||
|
||
// Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
|
||
// This variable is OS dependent, but on Linux contains information
|
||
// about the current cpu/core the code is running on.
|
||
// If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
|
||
func (c CPUInfo) Ia32TscAux() uint32 {
|
||
if !c.Supports(RDTSCP) {
|
||
return 0
|
||
}
|
||
_, _, ecx, _ := rdtscpAsm()
|
||
return ecx
|
||
}
|
||
|
||
// LogicalCPU will return the Logical CPU the code is currently executing on.
|
||
// This is likely to change when the OS re-schedules the running thread
|
||
// to another CPU.
|
||
// If the current core cannot be detected, -1 will be returned.
|
||
func (c CPUInfo) LogicalCPU() int {
|
||
if c.maxFunc < 1 {
|
||
return -1
|
||
}
|
||
_, ebx, _, _ := cpuid(1)
|
||
return int(ebx >> 24)
|
||
}
|
||
|
||
// frequencies tries to compute the clock speed of the CPU. If leaf 15 is
|
||
// supported, use it, otherwise parse the brand string. Yes, really.
|
||
func (c *CPUInfo) frequencies() {
|
||
c.Hz, c.BoostFreq = 0, 0
|
||
mfi := maxFunctionID()
|
||
if mfi >= 0x15 {
|
||
eax, ebx, ecx, _ := cpuid(0x15)
|
||
if eax != 0 && ebx != 0 && ecx != 0 {
|
||
c.Hz = (int64(ecx) * int64(ebx)) / int64(eax)
|
||
}
|
||
}
|
||
if mfi >= 0x16 {
|
||
a, b, _, _ := cpuid(0x16)
|
||
// Base...
|
||
if a&0xffff > 0 {
|
||
c.Hz = int64(a&0xffff) * 1_000_000
|
||
}
|
||
// Boost...
|
||
if b&0xffff > 0 {
|
||
c.BoostFreq = int64(b&0xffff) * 1_000_000
|
||
}
|
||
}
|
||
if c.Hz > 0 {
|
||
return
|
||
}
|
||
|
||
// computeHz determines the official rated speed of a CPU from its brand
|
||
// string. This insanity is *actually the official documented way to do
|
||
// this according to Intel*, prior to leaf 0x15 existing. The official
|
||
// documentation only shows this working for exactly `x.xx` or `xxxx`
|
||
// cases, e.g., `2.50GHz` or `1300MHz`; this parser will accept other
|
||
// sizes.
|
||
model := c.BrandName
|
||
hz := strings.LastIndex(model, "Hz")
|
||
if hz < 3 {
|
||
return
|
||
}
|
||
var multiplier int64
|
||
switch model[hz-1] {
|
||
case 'M':
|
||
multiplier = 1000 * 1000
|
||
case 'G':
|
||
multiplier = 1000 * 1000 * 1000
|
||
case 'T':
|
||
multiplier = 1000 * 1000 * 1000 * 1000
|
||
}
|
||
if multiplier == 0 {
|
||
return
|
||
}
|
||
freq := int64(0)
|
||
divisor := int64(0)
|
||
decimalShift := int64(1)
|
||
var i int
|
||
for i = hz - 2; i >= 0 && model[i] != ' '; i-- {
|
||
if model[i] >= '0' && model[i] <= '9' {
|
||
freq += int64(model[i]-'0') * decimalShift
|
||
decimalShift *= 10
|
||
} else if model[i] == '.' {
|
||
if divisor != 0 {
|
||
return
|
||
}
|
||
divisor = decimalShift
|
||
} else {
|
||
return
|
||
}
|
||
}
|
||
// we didn't find a space
|
||
if i < 0 {
|
||
return
|
||
}
|
||
if divisor != 0 {
|
||
c.Hz = (freq * multiplier) / divisor
|
||
return
|
||
}
|
||
c.Hz = freq * multiplier
|
||
}
|
||
|
||
// VM Will return true if the cpu id indicates we are in
|
||
// a virtual machine.
|
||
func (c CPUInfo) VM() bool {
|
||
return CPU.featureSet.inSet(HYPERVISOR)
|
||
}
|
||
|
||
// flags contains detected cpu features and characteristics
|
||
type flags uint64
|
||
|
||
// log2(bits_in_uint64)
|
||
const flagBitsLog2 = 6
|
||
const flagBits = 1 << flagBitsLog2
|
||
const flagMask = flagBits - 1
|
||
|
||
// flagSet contains detected cpu features and characteristics in an array of flags
|
||
type flagSet [(lastID + flagMask) / flagBits]flags
|
||
|
||
func (s *flagSet) inSet(feat FeatureID) bool {
|
||
return s[feat>>flagBitsLog2]&(1<<(feat&flagMask)) != 0
|
||
}
|
||
|
||
func (s *flagSet) set(feat FeatureID) {
|
||
s[feat>>flagBitsLog2] |= 1 << (feat & flagMask)
|
||
}
|
||
|
||
// setIf will set a feature if boolean is true.
|
||
func (s *flagSet) setIf(cond bool, features ...FeatureID) {
|
||
if cond {
|
||
for _, offset := range features {
|
||
s[offset>>flagBitsLog2] |= 1 << (offset & flagMask)
|
||
}
|
||
}
|
||
}
|
||
|
||
func (s *flagSet) unset(offset FeatureID) {
|
||
bit := flags(1 << (offset & flagMask))
|
||
s[offset>>flagBitsLog2] = s[offset>>flagBitsLog2] & ^bit
|
||
}
|
||
|
||
// or with another flagset.
|
||
func (s *flagSet) or(other flagSet) {
|
||
for i, v := range other[:] {
|
||
s[i] |= v
|
||
}
|
||
}
|
||
|
||
// hasSet returns whether all features are present.
|
||
func (s *flagSet) hasSet(other flagSet) bool {
|
||
for i, v := range other[:] {
|
||
if s[i]&v != v {
|
||
return false
|
||
}
|
||
}
|
||
return true
|
||
}
|
||
|
||
// hasSet returns whether all features are present.
|
||
func (s *flagSet) hasSetP(other *flagSet) bool {
|
||
for i, v := range other[:] {
|
||
if s[i]&v != v {
|
||
return false
|
||
}
|
||
}
|
||
return true
|
||
}
|
||
|
||
// hasOneOf returns whether one or more features are present.
|
||
func (s *flagSet) hasOneOf(other *flagSet) bool {
|
||
for i, v := range other[:] {
|
||
if s[i]&v != 0 {
|
||
return true
|
||
}
|
||
}
|
||
return false
|
||
}
|
||
|
||
// nEnabled will return the number of enabled flags.
|
||
func (s *flagSet) nEnabled() (n int) {
|
||
for _, v := range s[:] {
|
||
n += bits.OnesCount64(uint64(v))
|
||
}
|
||
return n
|
||
}
|
||
|
||
func flagSetWith(feat ...FeatureID) flagSet {
|
||
var res flagSet
|
||
for _, f := range feat {
|
||
res.set(f)
|
||
}
|
||
return res
|
||
}
|
||
|
||
// ParseFeature will parse the string and return the ID of the matching feature.
|
||
// Will return UNKNOWN if not found.
|
||
func ParseFeature(s string) FeatureID {
|
||
s = strings.ToUpper(s)
|
||
for i := firstID; i < lastID; i++ {
|
||
if i.String() == s {
|
||
return i
|
||
}
|
||
}
|
||
return UNKNOWN
|
||
}
|
||
|
||
// Strings returns an array of the detected features for FlagsSet.
|
||
func (s flagSet) Strings() []string {
|
||
if len(s) == 0 {
|
||
return []string{""}
|
||
}
|
||
r := make([]string, 0)
|
||
for i := firstID; i < lastID; i++ {
|
||
if s.inSet(i) {
|
||
r = append(r, i.String())
|
||
}
|
||
}
|
||
return r
|
||
}
|
||
|
||
func maxExtendedFunction() uint32 {
|
||
eax, _, _, _ := cpuid(0x80000000)
|
||
return eax
|
||
}
|
||
|
||
func maxFunctionID() uint32 {
|
||
a, _, _, _ := cpuid(0)
|
||
return a
|
||
}
|
||
|
||
func brandName() string {
|
||
if maxExtendedFunction() >= 0x80000004 {
|
||
v := make([]uint32, 0, 48)
|
||
for i := uint32(0); i < 3; i++ {
|
||
a, b, c, d := cpuid(0x80000002 + i)
|
||
v = append(v, a, b, c, d)
|
||
}
|
||
return strings.Trim(string(valAsString(v...)), " ")
|
||
}
|
||
return "unknown"
|
||
}
|
||
|
||
func threadsPerCore() int {
|
||
mfi := maxFunctionID()
|
||
vend, _ := vendorID()
|
||
|
||
if mfi < 0x4 || (vend != Intel && vend != AMD) {
|
||
return 1
|
||
}
|
||
|
||
if mfi < 0xb {
|
||
if vend != Intel {
|
||
return 1
|
||
}
|
||
_, b, _, d := cpuid(1)
|
||
if (d & (1 << 28)) != 0 {
|
||
// v will contain logical core count
|
||
v := (b >> 16) & 255
|
||
if v > 1 {
|
||
a4, _, _, _ := cpuid(4)
|
||
// physical cores
|
||
v2 := (a4 >> 26) + 1
|
||
if v2 > 0 {
|
||
return int(v) / int(v2)
|
||
}
|
||
}
|
||
}
|
||
return 1
|
||
}
|
||
_, b, _, _ := cpuidex(0xb, 0)
|
||
if b&0xffff == 0 {
|
||
if vend == AMD {
|
||
// Workaround for AMD returning 0, assume 2 if >= Zen 2
|
||
// It will be more correct than not.
|
||
fam, _, _ := familyModel()
|
||
_, _, _, d := cpuid(1)
|
||
if (d&(1<<28)) != 0 && fam >= 23 {
|
||
return 2
|
||
}
|
||
}
|
||
return 1
|
||
}
|
||
return int(b & 0xffff)
|
||
}
|
||
|
||
func logicalCores() int {
|
||
mfi := maxFunctionID()
|
||
v, _ := vendorID()
|
||
switch v {
|
||
case Intel:
|
||
// Use this on old Intel processors
|
||
if mfi < 0xb {
|
||
if mfi < 1 {
|
||
return 0
|
||
}
|
||
// CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
|
||
// that can be assigned to logical processors in a physical package.
|
||
// The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
|
||
_, ebx, _, _ := cpuid(1)
|
||
logical := (ebx >> 16) & 0xff
|
||
return int(logical)
|
||
}
|
||
_, b, _, _ := cpuidex(0xb, 1)
|
||
return int(b & 0xffff)
|
||
case AMD, Hygon:
|
||
_, b, _, _ := cpuid(1)
|
||
return int((b >> 16) & 0xff)
|
||
default:
|
||
return 0
|
||
}
|
||
}
|
||
|
||
func familyModel() (family, model, stepping int) {
|
||
if maxFunctionID() < 0x1 {
|
||
return 0, 0, 0
|
||
}
|
||
eax, _, _, _ := cpuid(1)
|
||
// If BaseFamily[3:0] is less than Fh then ExtendedFamily[7:0] is reserved and Family is equal to BaseFamily[3:0].
|
||
family = int((eax >> 8) & 0xf)
|
||
extFam := family == 0x6 // Intel is 0x6, needs extended model.
|
||
if family == 0xf {
|
||
// Add ExtFamily
|
||
family += int((eax >> 20) & 0xff)
|
||
extFam = true
|
||
}
|
||
// If BaseFamily[3:0] is less than 0Fh then ExtendedModel[3:0] is reserved and Model is equal to BaseModel[3:0].
|
||
model = int((eax >> 4) & 0xf)
|
||
if extFam {
|
||
// Add ExtModel
|
||
model += int((eax >> 12) & 0xf0)
|
||
}
|
||
stepping = int(eax & 0xf)
|
||
return family, model, stepping
|
||
}
|
||
|
||
func physicalCores() int {
|
||
v, _ := vendorID()
|
||
switch v {
|
||
case Intel:
|
||
return logicalCores() / threadsPerCore()
|
||
case AMD, Hygon:
|
||
lc := logicalCores()
|
||
tpc := threadsPerCore()
|
||
if lc > 0 && tpc > 0 {
|
||
return lc / tpc
|
||
}
|
||
|
||
// The following is inaccurate on AMD EPYC 7742 64-Core Processor
|
||
if maxExtendedFunction() >= 0x80000008 {
|
||
_, _, c, _ := cpuid(0x80000008)
|
||
if c&0xff > 0 {
|
||
return int(c&0xff) + 1
|
||
}
|
||
}
|
||
}
|
||
return 0
|
||
}
|
||
|
||
// Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
|
||
var vendorMapping = map[string]Vendor{
|
||
"AMDisbetter!": AMD,
|
||
"AuthenticAMD": AMD,
|
||
"CentaurHauls": VIA,
|
||
"GenuineIntel": Intel,
|
||
"TransmetaCPU": Transmeta,
|
||
"GenuineTMx86": Transmeta,
|
||
"Geode by NSC": NSC,
|
||
"VIA VIA VIA ": VIA,
|
||
"KVMKVMKVMKVM": KVM,
|
||
"Microsoft Hv": MSVM,
|
||
"VMwareVMware": VMware,
|
||
"XenVMMXenVMM": XenHVM,
|
||
"bhyve bhyve ": Bhyve,
|
||
"HygonGenuine": Hygon,
|
||
"Vortex86 SoC": SiS,
|
||
"SiS SiS SiS ": SiS,
|
||
"RiseRiseRise": SiS,
|
||
"Genuine RDC": RDC,
|
||
}
|
||
|
||
func vendorID() (Vendor, string) {
|
||
_, b, c, d := cpuid(0)
|
||
v := string(valAsString(b, d, c))
|
||
vend, ok := vendorMapping[v]
|
||
if !ok {
|
||
return VendorUnknown, v
|
||
}
|
||
return vend, v
|
||
}
|
||
|
||
func cacheLine() int {
|
||
if maxFunctionID() < 0x1 {
|
||
return 0
|
||
}
|
||
|
||
_, ebx, _, _ := cpuid(1)
|
||
cache := (ebx & 0xff00) >> 5 // cflush size
|
||
if cache == 0 && maxExtendedFunction() >= 0x80000006 {
|
||
_, _, ecx, _ := cpuid(0x80000006)
|
||
cache = ecx & 0xff // cacheline size
|
||
}
|
||
// TODO: Read from Cache and TLB Information
|
||
return int(cache)
|
||
}
|
||
|
||
func (c *CPUInfo) cacheSize() {
|
||
c.Cache.L1D = -1
|
||
c.Cache.L1I = -1
|
||
c.Cache.L2 = -1
|
||
c.Cache.L3 = -1
|
||
vendor, _ := vendorID()
|
||
switch vendor {
|
||
case Intel:
|
||
if maxFunctionID() < 4 {
|
||
return
|
||
}
|
||
c.Cache.L1I, c.Cache.L1D, c.Cache.L2, c.Cache.L3 = 0, 0, 0, 0
|
||
for i := uint32(0); ; i++ {
|
||
eax, ebx, ecx, _ := cpuidex(4, i)
|
||
cacheType := eax & 15
|
||
if cacheType == 0 {
|
||
break
|
||
}
|
||
cacheLevel := (eax >> 5) & 7
|
||
coherency := int(ebx&0xfff) + 1
|
||
partitions := int((ebx>>12)&0x3ff) + 1
|
||
associativity := int((ebx>>22)&0x3ff) + 1
|
||
sets := int(ecx) + 1
|
||
size := associativity * partitions * coherency * sets
|
||
switch cacheLevel {
|
||
case 1:
|
||
if cacheType == 1 {
|
||
// 1 = Data Cache
|
||
c.Cache.L1D = size
|
||
} else if cacheType == 2 {
|
||
// 2 = Instruction Cache
|
||
c.Cache.L1I = size
|
||
} else {
|
||
if c.Cache.L1D < 0 {
|
||
c.Cache.L1I = size
|
||
}
|
||
if c.Cache.L1I < 0 {
|
||
c.Cache.L1I = size
|
||
}
|
||
}
|
||
case 2:
|
||
c.Cache.L2 = size
|
||
case 3:
|
||
c.Cache.L3 = size
|
||
}
|
||
}
|
||
case AMD, Hygon:
|
||
// Untested.
|
||
if maxExtendedFunction() < 0x80000005 {
|
||
return
|
||
}
|
||
_, _, ecx, edx := cpuid(0x80000005)
|
||
c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
|
||
c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)
|
||
|
||
if maxExtendedFunction() < 0x80000006 {
|
||
return
|
||
}
|
||
_, _, ecx, _ = cpuid(0x80000006)
|
||
c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
|
||
|
||
// CPUID Fn8000_001D_EAX_x[N:0] Cache Properties
|
||
if maxExtendedFunction() < 0x8000001D || !c.Has(TOPEXT) {
|
||
return
|
||
}
|
||
|
||
// Xen Hypervisor is buggy and returns the same entry no matter ECX value.
|
||
// Hack: When we encounter the same entry 100 times we break.
|
||
nSame := 0
|
||
var last uint32
|
||
for i := uint32(0); i < math.MaxUint32; i++ {
|
||
eax, ebx, ecx, _ := cpuidex(0x8000001D, i)
|
||
|
||
level := (eax >> 5) & 7
|
||
cacheNumSets := ecx + 1
|
||
cacheLineSize := 1 + (ebx & 2047)
|
||
cachePhysPartitions := 1 + ((ebx >> 12) & 511)
|
||
cacheNumWays := 1 + ((ebx >> 22) & 511)
|
||
|
||
typ := eax & 15
|
||
size := int(cacheNumSets * cacheLineSize * cachePhysPartitions * cacheNumWays)
|
||
if typ == 0 {
|
||
return
|
||
}
|
||
|
||
// Check for the same value repeated.
|
||
comb := eax ^ ebx ^ ecx
|
||
if comb == last {
|
||
nSame++
|
||
if nSame == 100 {
|
||
return
|
||
}
|
||
}
|
||
last = comb
|
||
|
||
switch level {
|
||
case 1:
|
||
switch typ {
|
||
case 1:
|
||
// Data cache
|
||
c.Cache.L1D = size
|
||
case 2:
|
||
// Inst cache
|
||
c.Cache.L1I = size
|
||
default:
|
||
if c.Cache.L1D < 0 {
|
||
c.Cache.L1I = size
|
||
}
|
||
if c.Cache.L1I < 0 {
|
||
c.Cache.L1I = size
|
||
}
|
||
}
|
||
case 2:
|
||
c.Cache.L2 = size
|
||
case 3:
|
||
c.Cache.L3 = size
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
type SGXEPCSection struct {
|
||
BaseAddress uint64
|
||
EPCSize uint64
|
||
}
|
||
|
||
type SGXSupport struct {
|
||
Available bool
|
||
LaunchControl bool
|
||
SGX1Supported bool
|
||
SGX2Supported bool
|
||
MaxEnclaveSizeNot64 int64
|
||
MaxEnclaveSize64 int64
|
||
EPCSections []SGXEPCSection
|
||
}
|
||
|
||
func hasSGX(available, lc bool) (rval SGXSupport) {
|
||
rval.Available = available
|
||
|
||
if !available {
|
||
return
|
||
}
|
||
|
||
rval.LaunchControl = lc
|
||
|
||
a, _, _, d := cpuidex(0x12, 0)
|
||
rval.SGX1Supported = a&0x01 != 0
|
||
rval.SGX2Supported = a&0x02 != 0
|
||
rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF) // pow 2
|
||
rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
|
||
rval.EPCSections = make([]SGXEPCSection, 0)
|
||
|
||
for subleaf := uint32(2); subleaf < 2+8; subleaf++ {
|
||
eax, ebx, ecx, edx := cpuidex(0x12, subleaf)
|
||
leafType := eax & 0xf
|
||
|
||
if leafType == 0 {
|
||
// Invalid subleaf, stop iterating
|
||
break
|
||
} else if leafType == 1 {
|
||
// EPC Section subleaf
|
||
baseAddress := uint64(eax&0xfffff000) + (uint64(ebx&0x000fffff) << 32)
|
||
size := uint64(ecx&0xfffff000) + (uint64(edx&0x000fffff) << 32)
|
||
|
||
section := SGXEPCSection{BaseAddress: baseAddress, EPCSize: size}
|
||
rval.EPCSections = append(rval.EPCSections, section)
|
||
}
|
||
}
|
||
|
||
return
|
||
}
|
||
|
||
func support() flagSet {
|
||
var fs flagSet
|
||
mfi := maxFunctionID()
|
||
vend, _ := vendorID()
|
||
if mfi < 0x1 {
|
||
return fs
|
||
}
|
||
family, model, _ := familyModel()
|
||
|
||
_, _, c, d := cpuid(1)
|
||
fs.setIf((d&(1<<0)) != 0, X87)
|
||
fs.setIf((d&(1<<8)) != 0, CMPXCHG8)
|
||
fs.setIf((d&(1<<11)) != 0, SYSEE)
|
||
fs.setIf((d&(1<<15)) != 0, CMOV)
|
||
fs.setIf((d&(1<<23)) != 0, MMX)
|
||
fs.setIf((d&(1<<24)) != 0, FXSR)
|
||
fs.setIf((d&(1<<25)) != 0, FXSROPT)
|
||
fs.setIf((d&(1<<25)) != 0, SSE)
|
||
fs.setIf((d&(1<<26)) != 0, SSE2)
|
||
fs.setIf((c&1) != 0, SSE3)
|
||
fs.setIf((c&(1<<5)) != 0, VMX)
|
||
fs.setIf((c&(1<<9)) != 0, SSSE3)
|
||
fs.setIf((c&(1<<19)) != 0, SSE4)
|
||
fs.setIf((c&(1<<20)) != 0, SSE42)
|
||
fs.setIf((c&(1<<25)) != 0, AESNI)
|
||
fs.setIf((c&(1<<1)) != 0, CLMUL)
|
||
fs.setIf(c&(1<<22) != 0, MOVBE)
|
||
fs.setIf(c&(1<<23) != 0, POPCNT)
|
||
fs.setIf(c&(1<<30) != 0, RDRAND)
|
||
|
||
// This bit has been reserved by Intel & AMD for use by hypervisors,
|
||
// and indicates the presence of a hypervisor.
|
||
fs.setIf(c&(1<<31) != 0, HYPERVISOR)
|
||
fs.setIf(c&(1<<29) != 0, F16C)
|
||
fs.setIf(c&(1<<13) != 0, CX16)
|
||
|
||
if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
|
||
fs.setIf(threadsPerCore() > 1, HTT)
|
||
}
|
||
if vend == AMD && (d&(1<<28)) != 0 && mfi >= 4 {
|
||
fs.setIf(threadsPerCore() > 1, HTT)
|
||
}
|
||
fs.setIf(c&1<<26 != 0, XSAVE)
|
||
fs.setIf(c&1<<27 != 0, OSXSAVE)
|
||
// Check XGETBV/XSAVE (26), OXSAVE (27) and AVX (28) bits
|
||
const avxCheck = 1<<26 | 1<<27 | 1<<28
|
||
if c&avxCheck == avxCheck {
|
||
// Check for OS support
|
||
eax, _ := xgetbv(0)
|
||
if (eax & 0x6) == 0x6 {
|
||
fs.set(AVX)
|
||
switch vend {
|
||
case Intel:
|
||
// Older than Haswell.
|
||
fs.setIf(family == 6 && model < 60, AVXSLOW)
|
||
case AMD:
|
||
// Older than Zen 2
|
||
fs.setIf(family < 23 || (family == 23 && model < 49), AVXSLOW)
|
||
}
|
||
}
|
||
}
|
||
// FMA3 can be used with SSE registers, so no OS support is strictly needed.
|
||
// fma3 and OSXSAVE needed.
|
||
const fma3Check = 1<<12 | 1<<27
|
||
fs.setIf(c&fma3Check == fma3Check, FMA3)
|
||
|
||
// Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
|
||
if mfi >= 7 {
|
||
_, ebx, ecx, edx := cpuidex(7, 0)
|
||
if fs.inSet(AVX) && (ebx&0x00000020) != 0 {
|
||
fs.set(AVX2)
|
||
}
|
||
// CPUID.(EAX=7, ECX=0).EBX
|
||
if (ebx & 0x00000008) != 0 {
|
||
fs.set(BMI1)
|
||
fs.setIf((ebx&0x00000100) != 0, BMI2)
|
||
}
|
||
fs.setIf(ebx&(1<<2) != 0, SGX)
|
||
fs.setIf(ebx&(1<<4) != 0, HLE)
|
||
fs.setIf(ebx&(1<<9) != 0, ERMS)
|
||
fs.setIf(ebx&(1<<11) != 0, RTM)
|
||
fs.setIf(ebx&(1<<14) != 0, MPX)
|
||
fs.setIf(ebx&(1<<18) != 0, RDSEED)
|
||
fs.setIf(ebx&(1<<19) != 0, ADX)
|
||
fs.setIf(ebx&(1<<29) != 0, SHA)
|
||
|
||
// CPUID.(EAX=7, ECX=0).ECX
|
||
fs.setIf(ecx&(1<<5) != 0, WAITPKG)
|
||
fs.setIf(ecx&(1<<7) != 0, CETSS)
|
||
fs.setIf(ecx&(1<<8) != 0, GFNI)
|
||
fs.setIf(ecx&(1<<9) != 0, VAES)
|
||
fs.setIf(ecx&(1<<10) != 0, VPCLMULQDQ)
|
||
fs.setIf(ecx&(1<<13) != 0, TME)
|
||
fs.setIf(ecx&(1<<25) != 0, CLDEMOTE)
|
||
fs.setIf(ecx&(1<<27) != 0, MOVDIRI)
|
||
fs.setIf(ecx&(1<<28) != 0, MOVDIR64B)
|
||
fs.setIf(ecx&(1<<29) != 0, ENQCMD)
|
||
fs.setIf(ecx&(1<<30) != 0, SGXLC)
|
||
|
||
// CPUID.(EAX=7, ECX=0).EDX
|
||
fs.setIf(edx&(1<<4) != 0, FSRM)
|
||
fs.setIf(edx&(1<<9) != 0, SRBDS_CTRL)
|
||
fs.setIf(edx&(1<<10) != 0, MD_CLEAR)
|
||
fs.setIf(edx&(1<<11) != 0, RTM_ALWAYS_ABORT)
|
||
fs.setIf(edx&(1<<14) != 0, SERIALIZE)
|
||
fs.setIf(edx&(1<<15) != 0, HYBRID_CPU)
|
||
fs.setIf(edx&(1<<16) != 0, TSXLDTRK)
|
||
fs.setIf(edx&(1<<18) != 0, PCONFIG)
|
||
fs.setIf(edx&(1<<20) != 0, CETIBT)
|
||
fs.setIf(edx&(1<<26) != 0, IBPB)
|
||
fs.setIf(edx&(1<<27) != 0, STIBP)
|
||
fs.setIf(edx&(1<<28) != 0, FLUSH_L1D)
|
||
fs.setIf(edx&(1<<29) != 0, IA32_ARCH_CAP)
|
||
fs.setIf(edx&(1<<30) != 0, IA32_CORE_CAP)
|
||
fs.setIf(edx&(1<<31) != 0, SPEC_CTRL_SSBD)
|
||
|
||
// CPUID.(EAX=7, ECX=1).EDX
|
||
fs.setIf(edx&(1<<4) != 0, AVXVNNIINT8)
|
||
fs.setIf(edx&(1<<5) != 0, AVXNECONVERT)
|
||
fs.setIf(edx&(1<<14) != 0, PREFETCHI)
|
||
|
||
// CPUID.(EAX=7, ECX=1).EAX
|
||
eax1, _, _, _ := cpuidex(7, 1)
|
||
fs.setIf(fs.inSet(AVX) && eax1&(1<<4) != 0, AVXVNNI)
|
||
fs.setIf(eax1&(1<<7) != 0, CMPCCXADD)
|
||
fs.setIf(eax1&(1<<10) != 0, MOVSB_ZL)
|
||
fs.setIf(eax1&(1<<11) != 0, STOSB_SHORT)
|
||
fs.setIf(eax1&(1<<12) != 0, CMPSB_SCADBS_SHORT)
|
||
fs.setIf(eax1&(1<<22) != 0, HRESET)
|
||
fs.setIf(eax1&(1<<23) != 0, AVXIFMA)
|
||
fs.setIf(eax1&(1<<26) != 0, LAM)
|
||
|
||
// Only detect AVX-512 features if XGETBV is supported
|
||
if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
|
||
// Check for OS support
|
||
eax, _ := xgetbv(0)
|
||
|
||
// Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
|
||
// ZMM16-ZMM31 state are enabled by OS)
|
||
/// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
|
||
hasAVX512 := (eax>>5)&7 == 7 && (eax>>1)&3 == 3
|
||
if runtime.GOOS == "darwin" {
|
||
hasAVX512 = fs.inSet(AVX) && darwinHasAVX512()
|
||
}
|
||
if hasAVX512 {
|
||
fs.setIf(ebx&(1<<16) != 0, AVX512F)
|
||
fs.setIf(ebx&(1<<17) != 0, AVX512DQ)
|
||
fs.setIf(ebx&(1<<21) != 0, AVX512IFMA)
|
||
fs.setIf(ebx&(1<<26) != 0, AVX512PF)
|
||
fs.setIf(ebx&(1<<27) != 0, AVX512ER)
|
||
fs.setIf(ebx&(1<<28) != 0, AVX512CD)
|
||
fs.setIf(ebx&(1<<30) != 0, AVX512BW)
|
||
fs.setIf(ebx&(1<<31) != 0, AVX512VL)
|
||
// ecx
|
||
fs.setIf(ecx&(1<<1) != 0, AVX512VBMI)
|
||
fs.setIf(ecx&(1<<6) != 0, AVX512VBMI2)
|
||
fs.setIf(ecx&(1<<11) != 0, AVX512VNNI)
|
||
fs.setIf(ecx&(1<<12) != 0, AVX512BITALG)
|
||
fs.setIf(ecx&(1<<14) != 0, AVX512VPOPCNTDQ)
|
||
// edx
|
||
fs.setIf(edx&(1<<8) != 0, AVX512VP2INTERSECT)
|
||
fs.setIf(edx&(1<<22) != 0, AMXBF16)
|
||
fs.setIf(edx&(1<<23) != 0, AVX512FP16)
|
||
fs.setIf(edx&(1<<24) != 0, AMXTILE)
|
||
fs.setIf(edx&(1<<25) != 0, AMXINT8)
|
||
// eax1 = CPUID.(EAX=7, ECX=1).EAX
|
||
fs.setIf(eax1&(1<<5) != 0, AVX512BF16)
|
||
fs.setIf(eax1&(1<<19) != 0, WRMSRNS)
|
||
fs.setIf(eax1&(1<<21) != 0, AMXFP16)
|
||
fs.setIf(eax1&(1<<27) != 0, MSRLIST)
|
||
}
|
||
}
|
||
|
||
// CPUID.(EAX=7, ECX=2)
|
||
_, _, _, edx = cpuidex(7, 2)
|
||
fs.setIf(edx&(1<<0) != 0, PSFD)
|
||
fs.setIf(edx&(1<<1) != 0, IDPRED_CTRL)
|
||
fs.setIf(edx&(1<<2) != 0, RRSBA_CTRL)
|
||
fs.setIf(edx&(1<<4) != 0, BHI_CTRL)
|
||
fs.setIf(edx&(1<<5) != 0, MCDT_NO)
|
||
|
||
}
|
||
|
||
// Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)
|
||
// EAX
|
||
// Bit 00: XSAVEOPT is available.
|
||
// Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set.
|
||
// Bit 02: Supports XGETBV with ECX = 1 if set.
|
||
// Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set.
|
||
// Bits 31 - 04: Reserved.
|
||
// EBX
|
||
// Bits 31 - 00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.
|
||
// ECX
|
||
// Bits 31 - 00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be set to 1 only if ECX[n] is 1.
|
||
// EDX?
|
||
// Bits 07 - 00: Used for XCR0. Bit 08: PT state. Bit 09: Used for XCR0. Bits 12 - 10: Reserved. Bit 13: HWP state. Bits 31 - 14: Reserved.
|
||
if mfi >= 0xd {
|
||
if fs.inSet(XSAVE) {
|
||
eax, _, _, _ := cpuidex(0xd, 1)
|
||
fs.setIf(eax&(1<<0) != 0, XSAVEOPT)
|
||
fs.setIf(eax&(1<<1) != 0, XSAVEC)
|
||
fs.setIf(eax&(1<<2) != 0, XGETBV1)
|
||
fs.setIf(eax&(1<<3) != 0, XSAVES)
|
||
}
|
||
}
|
||
if maxExtendedFunction() >= 0x80000001 {
|
||
_, _, c, d := cpuid(0x80000001)
|
||
if (c & (1 << 5)) != 0 {
|
||
fs.set(LZCNT)
|
||
fs.set(POPCNT)
|
||
}
|
||
// ECX
|
||
fs.setIf((c&(1<<0)) != 0, LAHF)
|
||
fs.setIf((c&(1<<2)) != 0, SVM)
|
||
fs.setIf((c&(1<<6)) != 0, SSE4A)
|
||
fs.setIf((c&(1<<10)) != 0, IBS)
|
||
fs.setIf((c&(1<<22)) != 0, TOPEXT)
|
||
|
||
// EDX
|
||
fs.setIf(d&(1<<11) != 0, SYSCALL)
|
||
fs.setIf(d&(1<<20) != 0, NX)
|
||
fs.setIf(d&(1<<22) != 0, MMXEXT)
|
||
fs.setIf(d&(1<<23) != 0, MMX)
|
||
fs.setIf(d&(1<<24) != 0, FXSR)
|
||
fs.setIf(d&(1<<25) != 0, FXSROPT)
|
||
fs.setIf(d&(1<<27) != 0, RDTSCP)
|
||
fs.setIf(d&(1<<30) != 0, AMD3DNOWEXT)
|
||
fs.setIf(d&(1<<31) != 0, AMD3DNOW)
|
||
|
||
/* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
|
||
* used unless the OS has AVX support. */
|
||
if fs.inSet(AVX) {
|
||
fs.setIf((c&(1<<11)) != 0, XOP)
|
||
fs.setIf((c&(1<<16)) != 0, FMA4)
|
||
}
|
||
|
||
}
|
||
if maxExtendedFunction() >= 0x80000007 {
|
||
_, b, _, d := cpuid(0x80000007)
|
||
fs.setIf((b&(1<<0)) != 0, MCAOVERFLOW)
|
||
fs.setIf((b&(1<<1)) != 0, SUCCOR)
|
||
fs.setIf((b&(1<<2)) != 0, HWA)
|
||
fs.setIf((d&(1<<9)) != 0, CPBOOST)
|
||
}
|
||
|
||
if maxExtendedFunction() >= 0x80000008 {
|
||
_, b, _, _ := cpuid(0x80000008)
|
||
fs.setIf(b&(1<<28) != 0, PSFD)
|
||
fs.setIf(b&(1<<27) != 0, CPPC)
|
||
fs.setIf(b&(1<<24) != 0, SPEC_CTRL_SSBD)
|
||
fs.setIf(b&(1<<23) != 0, PPIN)
|
||
fs.setIf(b&(1<<21) != 0, TLB_FLUSH_NESTED)
|
||
fs.setIf(b&(1<<20) != 0, EFER_LMSLE_UNS)
|
||
fs.setIf(b&(1<<19) != 0, IBRS_PROVIDES_SMP)
|
||
fs.setIf(b&(1<<18) != 0, IBRS_PREFERRED)
|
||
fs.setIf(b&(1<<17) != 0, STIBP_ALWAYSON)
|
||
fs.setIf(b&(1<<15) != 0, STIBP)
|
||
fs.setIf(b&(1<<14) != 0, IBRS)
|
||
fs.setIf((b&(1<<13)) != 0, INT_WBINVD)
|
||
fs.setIf(b&(1<<12) != 0, IBPB)
|
||
fs.setIf((b&(1<<9)) != 0, WBNOINVD)
|
||
fs.setIf((b&(1<<8)) != 0, MCOMMIT)
|
||
fs.setIf((b&(1<<4)) != 0, RDPRU)
|
||
fs.setIf((b&(1<<3)) != 0, INVLPGB)
|
||
fs.setIf((b&(1<<1)) != 0, MSRIRC)
|
||
fs.setIf((b&(1<<0)) != 0, CLZERO)
|
||
}
|
||
|
||
if fs.inSet(SVM) && maxExtendedFunction() >= 0x8000000A {
|
||
_, _, _, edx := cpuid(0x8000000A)
|
||
fs.setIf((edx>>0)&1 == 1, SVMNP)
|
||
fs.setIf((edx>>1)&1 == 1, LBRVIRT)
|
||
fs.setIf((edx>>2)&1 == 1, SVML)
|
||
fs.setIf((edx>>3)&1 == 1, NRIPS)
|
||
fs.setIf((edx>>4)&1 == 1, TSCRATEMSR)
|
||
fs.setIf((edx>>5)&1 == 1, VMCBCLEAN)
|
||
fs.setIf((edx>>6)&1 == 1, SVMFBASID)
|
||
fs.setIf((edx>>7)&1 == 1, SVMDA)
|
||
fs.setIf((edx>>10)&1 == 1, SVMPF)
|
||
fs.setIf((edx>>12)&1 == 1, SVMPFT)
|
||
}
|
||
|
||
if maxExtendedFunction() >= 0x8000001a {
|
||
eax, _, _, _ := cpuid(0x8000001a)
|
||
fs.setIf((eax>>0)&1 == 1, FP128)
|
||
fs.setIf((eax>>1)&1 == 1, MOVU)
|
||
fs.setIf((eax>>2)&1 == 1, FP256)
|
||
}
|
||
|
||
if maxExtendedFunction() >= 0x8000001b && fs.inSet(IBS) {
|
||
eax, _, _, _ := cpuid(0x8000001b)
|
||
fs.setIf((eax>>0)&1 == 1, IBSFFV)
|
||
fs.setIf((eax>>1)&1 == 1, IBSFETCHSAM)
|
||
fs.setIf((eax>>2)&1 == 1, IBSOPSAM)
|
||
fs.setIf((eax>>3)&1 == 1, IBSRDWROPCNT)
|
||
fs.setIf((eax>>4)&1 == 1, IBSOPCNT)
|
||
fs.setIf((eax>>5)&1 == 1, IBSBRNTRGT)
|
||
fs.setIf((eax>>6)&1 == 1, IBSOPCNTEXT)
|
||
fs.setIf((eax>>7)&1 == 1, IBSRIPINVALIDCHK)
|
||
fs.setIf((eax>>8)&1 == 1, IBS_OPFUSE)
|
||
fs.setIf((eax>>9)&1 == 1, IBS_FETCH_CTLX)
|
||
fs.setIf((eax>>10)&1 == 1, IBS_OPDATA4) // Doc says "Fixed,0. IBS op data 4 MSR supported", but assuming they mean 1.
|
||
fs.setIf((eax>>11)&1 == 1, IBS_ZEN4)
|
||
}
|
||
|
||
if maxExtendedFunction() >= 0x8000001f && vend == AMD {
|
||
a, _, _, _ := cpuid(0x8000001f)
|
||
fs.setIf((a>>0)&1 == 1, SME)
|
||
fs.setIf((a>>1)&1 == 1, SEV)
|
||
fs.setIf((a>>2)&1 == 1, MSR_PAGEFLUSH)
|
||
fs.setIf((a>>3)&1 == 1, SEV_ES)
|
||
fs.setIf((a>>4)&1 == 1, SEV_SNP)
|
||
fs.setIf((a>>5)&1 == 1, VMPL)
|
||
fs.setIf((a>>10)&1 == 1, SME_COHERENT)
|
||
fs.setIf((a>>11)&1 == 1, SEV_64BIT)
|
||
fs.setIf((a>>12)&1 == 1, SEV_RESTRICTED)
|
||
fs.setIf((a>>13)&1 == 1, SEV_ALTERNATIVE)
|
||
fs.setIf((a>>14)&1 == 1, SEV_DEBUGSWAP)
|
||
fs.setIf((a>>15)&1 == 1, IBS_PREVENTHOST)
|
||
fs.setIf((a>>16)&1 == 1, VTE)
|
||
fs.setIf((a>>24)&1 == 1, VMSA_REGPROT)
|
||
}
|
||
|
||
return fs
|
||
}
|
||
|
||
func valAsString(values ...uint32) []byte {
|
||
r := make([]byte, 4*len(values))
|
||
for i, v := range values {
|
||
dst := r[i*4:]
|
||
dst[0] = byte(v & 0xff)
|
||
dst[1] = byte((v >> 8) & 0xff)
|
||
dst[2] = byte((v >> 16) & 0xff)
|
||
dst[3] = byte((v >> 24) & 0xff)
|
||
switch {
|
||
case dst[0] == 0:
|
||
return r[:i*4]
|
||
case dst[1] == 0:
|
||
return r[:i*4+1]
|
||
case dst[2] == 0:
|
||
return r[:i*4+2]
|
||
case dst[3] == 0:
|
||
return r[:i*4+3]
|
||
}
|
||
}
|
||
return r
|
||
}
|