mirror of
https://codeberg.org/superseriousbusiness/gotosocial.git
synced 2025-01-04 07:17:23 +03:00
9d0df426da
* feat: vendor minio client * feat: introduce storage package with s3 support * feat: serve s3 files directly this saves a lot of bandwith as the files are fetched from the object store directly * fix: use explicit local storage in tests * feat: integrate s3 storage with the main server * fix: add s3 config to cli tests * docs: explicitly set values in example config also adds license header to the storage package * fix: use better http status code on s3 redirect HTTP 302 Found is the best fit, as it signifies that the resource requested was found but not under its presumed URL 307/TemporaryRedirect would mean that this resource is usually located here, not in this case 303/SeeOther indicates that the redirection does not link to the requested resource but to another page * refactor: use context in storage driver interface
568 lines
14 KiB
ArmAsm
568 lines
14 KiB
ArmAsm
// Copyright 2016 The Go Authors. All rights reserved.
|
|
// Copyright (c) 2019 Klaus Post. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// +build !appengine
|
|
// +build gc
|
|
// +build !noasm
|
|
|
|
#include "textflag.h"
|
|
|
|
#define R_TMP0 AX
|
|
#define R_TMP1 BX
|
|
#define R_LEN CX
|
|
#define R_OFF DX
|
|
#define R_SRC SI
|
|
#define R_DST DI
|
|
#define R_DBASE R8
|
|
#define R_DLEN R9
|
|
#define R_DEND R10
|
|
#define R_SBASE R11
|
|
#define R_SLEN R12
|
|
#define R_SEND R13
|
|
#define R_TMP2 R14
|
|
#define R_TMP3 R15
|
|
|
|
// The asm code generally follows the pure Go code in decode_other.go, except
|
|
// where marked with a "!!!".
|
|
|
|
// func decode(dst, src []byte) int
|
|
//
|
|
// All local variables fit into registers. The non-zero stack size is only to
|
|
// spill registers and push args when issuing a CALL. The register allocation:
|
|
// - R_TMP0 scratch
|
|
// - R_TMP1 scratch
|
|
// - R_LEN length or x (shared)
|
|
// - R_OFF offset
|
|
// - R_SRC &src[s]
|
|
// - R_DST &dst[d]
|
|
// + R_DBASE dst_base
|
|
// + R_DLEN dst_len
|
|
// + R_DEND dst_base + dst_len
|
|
// + R_SBASE src_base
|
|
// + R_SLEN src_len
|
|
// + R_SEND src_base + src_len
|
|
// - R_TMP2 used by doCopy
|
|
// - R_TMP3 used by doCopy
|
|
//
|
|
// The registers R_DBASE-R_SEND (marked with a "+") are set at the start of the
|
|
// function, and after a CALL returns, and are not otherwise modified.
|
|
//
|
|
// The d variable is implicitly R_DST - R_DBASE, and len(dst)-d is R_DEND - R_DST.
|
|
// The s variable is implicitly R_SRC - R_SBASE, and len(src)-s is R_SEND - R_SRC.
|
|
TEXT ·s2Decode(SB), NOSPLIT, $48-56
|
|
// Initialize R_SRC, R_DST and R_DBASE-R_SEND.
|
|
MOVQ dst_base+0(FP), R_DBASE
|
|
MOVQ dst_len+8(FP), R_DLEN
|
|
MOVQ R_DBASE, R_DST
|
|
MOVQ R_DBASE, R_DEND
|
|
ADDQ R_DLEN, R_DEND
|
|
MOVQ src_base+24(FP), R_SBASE
|
|
MOVQ src_len+32(FP), R_SLEN
|
|
MOVQ R_SBASE, R_SRC
|
|
MOVQ R_SBASE, R_SEND
|
|
ADDQ R_SLEN, R_SEND
|
|
XORQ R_OFF, R_OFF
|
|
|
|
loop:
|
|
// for s < len(src)
|
|
CMPQ R_SRC, R_SEND
|
|
JEQ end
|
|
|
|
// R_LEN = uint32(src[s])
|
|
//
|
|
// switch src[s] & 0x03
|
|
MOVBLZX (R_SRC), R_LEN
|
|
MOVL R_LEN, R_TMP1
|
|
ANDL $3, R_TMP1
|
|
CMPL R_TMP1, $1
|
|
JAE tagCopy
|
|
|
|
// ----------------------------------------
|
|
// The code below handles literal tags.
|
|
|
|
// case tagLiteral:
|
|
// x := uint32(src[s] >> 2)
|
|
// switch
|
|
SHRL $2, R_LEN
|
|
CMPL R_LEN, $60
|
|
JAE tagLit60Plus
|
|
|
|
// case x < 60:
|
|
// s++
|
|
INCQ R_SRC
|
|
|
|
doLit:
|
|
// This is the end of the inner "switch", when we have a literal tag.
|
|
//
|
|
// We assume that R_LEN == x and x fits in a uint32, where x is the variable
|
|
// used in the pure Go decode_other.go code.
|
|
|
|
// length = int(x) + 1
|
|
//
|
|
// Unlike the pure Go code, we don't need to check if length <= 0 because
|
|
// R_LEN can hold 64 bits, so the increment cannot overflow.
|
|
INCQ R_LEN
|
|
|
|
// Prepare to check if copying length bytes will run past the end of dst or
|
|
// src.
|
|
//
|
|
// R_TMP0 = len(dst) - d
|
|
// R_TMP1 = len(src) - s
|
|
MOVQ R_DEND, R_TMP0
|
|
SUBQ R_DST, R_TMP0
|
|
MOVQ R_SEND, R_TMP1
|
|
SUBQ R_SRC, R_TMP1
|
|
|
|
// !!! Try a faster technique for short (16 or fewer bytes) copies.
|
|
//
|
|
// if length > 16 || len(dst)-d < 16 || len(src)-s < 16 {
|
|
// goto callMemmove // Fall back on calling runtime·memmove.
|
|
// }
|
|
//
|
|
// The C++ snappy code calls this TryFastAppend. It also checks len(src)-s
|
|
// against 21 instead of 16, because it cannot assume that all of its input
|
|
// is contiguous in memory and so it needs to leave enough source bytes to
|
|
// read the next tag without refilling buffers, but Go's Decode assumes
|
|
// contiguousness (the src argument is a []byte).
|
|
CMPQ R_LEN, $16
|
|
JGT callMemmove
|
|
CMPQ R_TMP0, $16
|
|
JLT callMemmove
|
|
CMPQ R_TMP1, $16
|
|
JLT callMemmove
|
|
|
|
// !!! Implement the copy from src to dst as a 16-byte load and store.
|
|
// (Decode's documentation says that dst and src must not overlap.)
|
|
//
|
|
// This always copies 16 bytes, instead of only length bytes, but that's
|
|
// OK. If the input is a valid Snappy encoding then subsequent iterations
|
|
// will fix up the overrun. Otherwise, Decode returns a nil []byte (and a
|
|
// non-nil error), so the overrun will be ignored.
|
|
//
|
|
// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
|
|
// 16-byte loads and stores. This technique probably wouldn't be as
|
|
// effective on architectures that are fussier about alignment.
|
|
MOVOU 0(R_SRC), X0
|
|
MOVOU X0, 0(R_DST)
|
|
|
|
// d += length
|
|
// s += length
|
|
ADDQ R_LEN, R_DST
|
|
ADDQ R_LEN, R_SRC
|
|
JMP loop
|
|
|
|
callMemmove:
|
|
// if length > len(dst)-d || length > len(src)-s { etc }
|
|
CMPQ R_LEN, R_TMP0
|
|
JGT errCorrupt
|
|
CMPQ R_LEN, R_TMP1
|
|
JGT errCorrupt
|
|
|
|
// copy(dst[d:], src[s:s+length])
|
|
//
|
|
// This means calling runtime·memmove(&dst[d], &src[s], length), so we push
|
|
// R_DST, R_SRC and R_LEN as arguments. Coincidentally, we also need to spill those
|
|
// three registers to the stack, to save local variables across the CALL.
|
|
MOVQ R_DST, 0(SP)
|
|
MOVQ R_SRC, 8(SP)
|
|
MOVQ R_LEN, 16(SP)
|
|
MOVQ R_DST, 24(SP)
|
|
MOVQ R_SRC, 32(SP)
|
|
MOVQ R_LEN, 40(SP)
|
|
MOVQ R_OFF, 48(SP)
|
|
CALL runtime·memmove(SB)
|
|
|
|
// Restore local variables: unspill registers from the stack and
|
|
// re-calculate R_DBASE-R_SEND.
|
|
MOVQ 24(SP), R_DST
|
|
MOVQ 32(SP), R_SRC
|
|
MOVQ 40(SP), R_LEN
|
|
MOVQ 48(SP), R_OFF
|
|
MOVQ dst_base+0(FP), R_DBASE
|
|
MOVQ dst_len+8(FP), R_DLEN
|
|
MOVQ R_DBASE, R_DEND
|
|
ADDQ R_DLEN, R_DEND
|
|
MOVQ src_base+24(FP), R_SBASE
|
|
MOVQ src_len+32(FP), R_SLEN
|
|
MOVQ R_SBASE, R_SEND
|
|
ADDQ R_SLEN, R_SEND
|
|
|
|
// d += length
|
|
// s += length
|
|
ADDQ R_LEN, R_DST
|
|
ADDQ R_LEN, R_SRC
|
|
JMP loop
|
|
|
|
tagLit60Plus:
|
|
// !!! This fragment does the
|
|
//
|
|
// s += x - 58; if uint(s) > uint(len(src)) { etc }
|
|
//
|
|
// checks. In the asm version, we code it once instead of once per switch case.
|
|
ADDQ R_LEN, R_SRC
|
|
SUBQ $58, R_SRC
|
|
CMPQ R_SRC, R_SEND
|
|
JA errCorrupt
|
|
|
|
// case x == 60:
|
|
CMPL R_LEN, $61
|
|
JEQ tagLit61
|
|
JA tagLit62Plus
|
|
|
|
// x = uint32(src[s-1])
|
|
MOVBLZX -1(R_SRC), R_LEN
|
|
JMP doLit
|
|
|
|
tagLit61:
|
|
// case x == 61:
|
|
// x = uint32(src[s-2]) | uint32(src[s-1])<<8
|
|
MOVWLZX -2(R_SRC), R_LEN
|
|
JMP doLit
|
|
|
|
tagLit62Plus:
|
|
CMPL R_LEN, $62
|
|
JA tagLit63
|
|
|
|
// case x == 62:
|
|
// x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
|
|
// We read one byte, safe to read one back, since we are just reading tag.
|
|
// x = binary.LittleEndian.Uint32(src[s-1:]) >> 8
|
|
MOVL -4(R_SRC), R_LEN
|
|
SHRL $8, R_LEN
|
|
JMP doLit
|
|
|
|
tagLit63:
|
|
// case x == 63:
|
|
// x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
|
|
MOVL -4(R_SRC), R_LEN
|
|
JMP doLit
|
|
|
|
// The code above handles literal tags.
|
|
// ----------------------------------------
|
|
// The code below handles copy tags.
|
|
|
|
tagCopy4:
|
|
// case tagCopy4:
|
|
// s += 5
|
|
ADDQ $5, R_SRC
|
|
|
|
// if uint(s) > uint(len(src)) { etc }
|
|
CMPQ R_SRC, R_SEND
|
|
JA errCorrupt
|
|
|
|
// length = 1 + int(src[s-5])>>2
|
|
SHRQ $2, R_LEN
|
|
INCQ R_LEN
|
|
|
|
// offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
|
|
MOVLQZX -4(R_SRC), R_OFF
|
|
JMP doCopy
|
|
|
|
tagCopy2:
|
|
// case tagCopy2:
|
|
// s += 3
|
|
ADDQ $3, R_SRC
|
|
|
|
// if uint(s) > uint(len(src)) { etc }
|
|
CMPQ R_SRC, R_SEND
|
|
JA errCorrupt
|
|
|
|
// length = 1 + int(src[s-3])>>2
|
|
SHRQ $2, R_LEN
|
|
INCQ R_LEN
|
|
|
|
// offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
|
|
MOVWQZX -2(R_SRC), R_OFF
|
|
JMP doCopy
|
|
|
|
tagCopy:
|
|
// We have a copy tag. We assume that:
|
|
// - R_TMP1 == src[s] & 0x03
|
|
// - R_LEN == src[s]
|
|
CMPQ R_TMP1, $2
|
|
JEQ tagCopy2
|
|
JA tagCopy4
|
|
|
|
// case tagCopy1:
|
|
// s += 2
|
|
ADDQ $2, R_SRC
|
|
|
|
// if uint(s) > uint(len(src)) { etc }
|
|
CMPQ R_SRC, R_SEND
|
|
JA errCorrupt
|
|
|
|
// offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
|
|
// length = 4 + int(src[s-2])>>2&0x7
|
|
MOVBQZX -1(R_SRC), R_TMP1
|
|
MOVQ R_LEN, R_TMP0
|
|
SHRQ $2, R_LEN
|
|
ANDQ $0xe0, R_TMP0
|
|
ANDQ $7, R_LEN
|
|
SHLQ $3, R_TMP0
|
|
ADDQ $4, R_LEN
|
|
ORQ R_TMP1, R_TMP0
|
|
|
|
// check if repeat code, ZF set by ORQ.
|
|
JZ repeatCode
|
|
|
|
// This is a regular copy, transfer our temporary value to R_OFF (length)
|
|
MOVQ R_TMP0, R_OFF
|
|
JMP doCopy
|
|
|
|
// This is a repeat code.
|
|
repeatCode:
|
|
// If length < 9, reuse last offset, with the length already calculated.
|
|
CMPQ R_LEN, $9
|
|
JL doCopyRepeat
|
|
|
|
// Read additional bytes for length.
|
|
JE repeatLen1
|
|
|
|
// Rare, so the extra branch shouldn't hurt too much.
|
|
CMPQ R_LEN, $10
|
|
JE repeatLen2
|
|
JMP repeatLen3
|
|
|
|
// Read repeat lengths.
|
|
repeatLen1:
|
|
// s ++
|
|
ADDQ $1, R_SRC
|
|
|
|
// if uint(s) > uint(len(src)) { etc }
|
|
CMPQ R_SRC, R_SEND
|
|
JA errCorrupt
|
|
|
|
// length = src[s-1] + 8
|
|
MOVBQZX -1(R_SRC), R_LEN
|
|
ADDL $8, R_LEN
|
|
JMP doCopyRepeat
|
|
|
|
repeatLen2:
|
|
// s +=2
|
|
ADDQ $2, R_SRC
|
|
|
|
// if uint(s) > uint(len(src)) { etc }
|
|
CMPQ R_SRC, R_SEND
|
|
JA errCorrupt
|
|
|
|
// length = uint32(src[s-2]) | (uint32(src[s-1])<<8) + (1 << 8)
|
|
MOVWQZX -2(R_SRC), R_LEN
|
|
ADDL $260, R_LEN
|
|
JMP doCopyRepeat
|
|
|
|
repeatLen3:
|
|
// s +=3
|
|
ADDQ $3, R_SRC
|
|
|
|
// if uint(s) > uint(len(src)) { etc }
|
|
CMPQ R_SRC, R_SEND
|
|
JA errCorrupt
|
|
|
|
// length = uint32(src[s-3]) | (uint32(src[s-2])<<8) | (uint32(src[s-1])<<16) + (1 << 16)
|
|
// Read one byte further back (just part of the tag, shifted out)
|
|
MOVL -4(R_SRC), R_LEN
|
|
SHRL $8, R_LEN
|
|
ADDL $65540, R_LEN
|
|
JMP doCopyRepeat
|
|
|
|
doCopy:
|
|
// This is the end of the outer "switch", when we have a copy tag.
|
|
//
|
|
// We assume that:
|
|
// - R_LEN == length && R_LEN > 0
|
|
// - R_OFF == offset
|
|
|
|
// if d < offset { etc }
|
|
MOVQ R_DST, R_TMP1
|
|
SUBQ R_DBASE, R_TMP1
|
|
CMPQ R_TMP1, R_OFF
|
|
JLT errCorrupt
|
|
|
|
// Repeat values can skip the test above, since any offset > 0 will be in dst.
|
|
doCopyRepeat:
|
|
// if offset <= 0 { etc }
|
|
CMPQ R_OFF, $0
|
|
JLE errCorrupt
|
|
|
|
// if length > len(dst)-d { etc }
|
|
MOVQ R_DEND, R_TMP1
|
|
SUBQ R_DST, R_TMP1
|
|
CMPQ R_LEN, R_TMP1
|
|
JGT errCorrupt
|
|
|
|
// forwardCopy(dst[d:d+length], dst[d-offset:]); d += length
|
|
//
|
|
// Set:
|
|
// - R_TMP2 = len(dst)-d
|
|
// - R_TMP3 = &dst[d-offset]
|
|
MOVQ R_DEND, R_TMP2
|
|
SUBQ R_DST, R_TMP2
|
|
MOVQ R_DST, R_TMP3
|
|
SUBQ R_OFF, R_TMP3
|
|
|
|
// !!! Try a faster technique for short (16 or fewer bytes) forward copies.
|
|
//
|
|
// First, try using two 8-byte load/stores, similar to the doLit technique
|
|
// above. Even if dst[d:d+length] and dst[d-offset:] can overlap, this is
|
|
// still OK if offset >= 8. Note that this has to be two 8-byte load/stores
|
|
// and not one 16-byte load/store, and the first store has to be before the
|
|
// second load, due to the overlap if offset is in the range [8, 16).
|
|
//
|
|
// if length > 16 || offset < 8 || len(dst)-d < 16 {
|
|
// goto slowForwardCopy
|
|
// }
|
|
// copy 16 bytes
|
|
// d += length
|
|
CMPQ R_LEN, $16
|
|
JGT slowForwardCopy
|
|
CMPQ R_OFF, $8
|
|
JLT slowForwardCopy
|
|
CMPQ R_TMP2, $16
|
|
JLT slowForwardCopy
|
|
MOVQ 0(R_TMP3), R_TMP0
|
|
MOVQ R_TMP0, 0(R_DST)
|
|
MOVQ 8(R_TMP3), R_TMP1
|
|
MOVQ R_TMP1, 8(R_DST)
|
|
ADDQ R_LEN, R_DST
|
|
JMP loop
|
|
|
|
slowForwardCopy:
|
|
// !!! If the forward copy is longer than 16 bytes, or if offset < 8, we
|
|
// can still try 8-byte load stores, provided we can overrun up to 10 extra
|
|
// bytes. As above, the overrun will be fixed up by subsequent iterations
|
|
// of the outermost loop.
|
|
//
|
|
// The C++ snappy code calls this technique IncrementalCopyFastPath. Its
|
|
// commentary says:
|
|
//
|
|
// ----
|
|
//
|
|
// The main part of this loop is a simple copy of eight bytes at a time
|
|
// until we've copied (at least) the requested amount of bytes. However,
|
|
// if d and d-offset are less than eight bytes apart (indicating a
|
|
// repeating pattern of length < 8), we first need to expand the pattern in
|
|
// order to get the correct results. For instance, if the buffer looks like
|
|
// this, with the eight-byte <d-offset> and <d> patterns marked as
|
|
// intervals:
|
|
//
|
|
// abxxxxxxxxxxxx
|
|
// [------] d-offset
|
|
// [------] d
|
|
//
|
|
// a single eight-byte copy from <d-offset> to <d> will repeat the pattern
|
|
// once, after which we can move <d> two bytes without moving <d-offset>:
|
|
//
|
|
// ababxxxxxxxxxx
|
|
// [------] d-offset
|
|
// [------] d
|
|
//
|
|
// and repeat the exercise until the two no longer overlap.
|
|
//
|
|
// This allows us to do very well in the special case of one single byte
|
|
// repeated many times, without taking a big hit for more general cases.
|
|
//
|
|
// The worst case of extra writing past the end of the match occurs when
|
|
// offset == 1 and length == 1; the last copy will read from byte positions
|
|
// [0..7] and write to [4..11], whereas it was only supposed to write to
|
|
// position 1. Thus, ten excess bytes.
|
|
//
|
|
// ----
|
|
//
|
|
// That "10 byte overrun" worst case is confirmed by Go's
|
|
// TestSlowForwardCopyOverrun, which also tests the fixUpSlowForwardCopy
|
|
// and finishSlowForwardCopy algorithm.
|
|
//
|
|
// if length > len(dst)-d-10 {
|
|
// goto verySlowForwardCopy
|
|
// }
|
|
SUBQ $10, R_TMP2
|
|
CMPQ R_LEN, R_TMP2
|
|
JGT verySlowForwardCopy
|
|
|
|
// We want to keep the offset, so we use R_TMP2 from here.
|
|
MOVQ R_OFF, R_TMP2
|
|
|
|
makeOffsetAtLeast8:
|
|
// !!! As above, expand the pattern so that offset >= 8 and we can use
|
|
// 8-byte load/stores.
|
|
//
|
|
// for offset < 8 {
|
|
// copy 8 bytes from dst[d-offset:] to dst[d:]
|
|
// length -= offset
|
|
// d += offset
|
|
// offset += offset
|
|
// // The two previous lines together means that d-offset, and therefore
|
|
// // R_TMP3, is unchanged.
|
|
// }
|
|
CMPQ R_TMP2, $8
|
|
JGE fixUpSlowForwardCopy
|
|
MOVQ (R_TMP3), R_TMP1
|
|
MOVQ R_TMP1, (R_DST)
|
|
SUBQ R_TMP2, R_LEN
|
|
ADDQ R_TMP2, R_DST
|
|
ADDQ R_TMP2, R_TMP2
|
|
JMP makeOffsetAtLeast8
|
|
|
|
fixUpSlowForwardCopy:
|
|
// !!! Add length (which might be negative now) to d (implied by R_DST being
|
|
// &dst[d]) so that d ends up at the right place when we jump back to the
|
|
// top of the loop. Before we do that, though, we save R_DST to R_TMP0 so that, if
|
|
// length is positive, copying the remaining length bytes will write to the
|
|
// right place.
|
|
MOVQ R_DST, R_TMP0
|
|
ADDQ R_LEN, R_DST
|
|
|
|
finishSlowForwardCopy:
|
|
// !!! Repeat 8-byte load/stores until length <= 0. Ending with a negative
|
|
// length means that we overrun, but as above, that will be fixed up by
|
|
// subsequent iterations of the outermost loop.
|
|
CMPQ R_LEN, $0
|
|
JLE loop
|
|
MOVQ (R_TMP3), R_TMP1
|
|
MOVQ R_TMP1, (R_TMP0)
|
|
ADDQ $8, R_TMP3
|
|
ADDQ $8, R_TMP0
|
|
SUBQ $8, R_LEN
|
|
JMP finishSlowForwardCopy
|
|
|
|
verySlowForwardCopy:
|
|
// verySlowForwardCopy is a simple implementation of forward copy. In C
|
|
// parlance, this is a do/while loop instead of a while loop, since we know
|
|
// that length > 0. In Go syntax:
|
|
//
|
|
// for {
|
|
// dst[d] = dst[d - offset]
|
|
// d++
|
|
// length--
|
|
// if length == 0 {
|
|
// break
|
|
// }
|
|
// }
|
|
MOVB (R_TMP3), R_TMP1
|
|
MOVB R_TMP1, (R_DST)
|
|
INCQ R_TMP3
|
|
INCQ R_DST
|
|
DECQ R_LEN
|
|
JNZ verySlowForwardCopy
|
|
JMP loop
|
|
|
|
// The code above handles copy tags.
|
|
// ----------------------------------------
|
|
|
|
end:
|
|
// This is the end of the "for s < len(src)".
|
|
//
|
|
// if d != len(dst) { etc }
|
|
CMPQ R_DST, R_DEND
|
|
JNE errCorrupt
|
|
|
|
// return 0
|
|
MOVQ $0, ret+48(FP)
|
|
RET
|
|
|
|
errCorrupt:
|
|
// return decodeErrCodeCorrupt
|
|
MOVQ $1, ret+48(FP)
|
|
RET
|