mirror of
https://codeberg.org/superseriousbusiness/gotosocial.git
synced 2025-01-12 03:07:22 +03:00
57dc742c76
Bumps [github.com/KimMachineGun/automemlimit](https://github.com/KimMachineGun/automemlimit) from 0.2.4 to 0.2.5. - [Release notes](https://github.com/KimMachineGun/automemlimit/releases) - [Commits](https://github.com/KimMachineGun/automemlimit/compare/v0.2.4...v0.2.5) --- updated-dependencies: - dependency-name: github.com/KimMachineGun/automemlimit dependency-type: direct:production update-type: version-update:semver-patch ... Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
1197 lines
36 KiB
Go
1197 lines
36 KiB
Go
package ebpf
|
|
|
|
import (
|
|
"bufio"
|
|
"bytes"
|
|
"debug/elf"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
"os"
|
|
"strings"
|
|
|
|
"github.com/cilium/ebpf/asm"
|
|
"github.com/cilium/ebpf/btf"
|
|
"github.com/cilium/ebpf/internal"
|
|
"github.com/cilium/ebpf/internal/unix"
|
|
)
|
|
|
|
// elfCode is a convenience to reduce the amount of arguments that have to
|
|
// be passed around explicitly. You should treat its contents as immutable.
|
|
type elfCode struct {
|
|
*internal.SafeELFFile
|
|
sections map[elf.SectionIndex]*elfSection
|
|
license string
|
|
version uint32
|
|
btf *btf.Spec
|
|
extInfo *btf.ExtInfos
|
|
}
|
|
|
|
// LoadCollectionSpec parses an ELF file into a CollectionSpec.
|
|
func LoadCollectionSpec(file string) (*CollectionSpec, error) {
|
|
f, err := os.Open(file)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer f.Close()
|
|
|
|
spec, err := LoadCollectionSpecFromReader(f)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("file %s: %w", file, err)
|
|
}
|
|
return spec, nil
|
|
}
|
|
|
|
// LoadCollectionSpecFromReader parses an ELF file into a CollectionSpec.
|
|
func LoadCollectionSpecFromReader(rd io.ReaderAt) (*CollectionSpec, error) {
|
|
f, err := internal.NewSafeELFFile(rd)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var (
|
|
licenseSection *elf.Section
|
|
versionSection *elf.Section
|
|
sections = make(map[elf.SectionIndex]*elfSection)
|
|
relSections = make(map[elf.SectionIndex]*elf.Section)
|
|
)
|
|
|
|
// This is the target of relocations generated by inline assembly.
|
|
sections[elf.SHN_UNDEF] = newElfSection(new(elf.Section), undefSection)
|
|
|
|
// Collect all the sections we're interested in. This includes relocations
|
|
// which we parse later.
|
|
for i, sec := range f.Sections {
|
|
idx := elf.SectionIndex(i)
|
|
|
|
switch {
|
|
case strings.HasPrefix(sec.Name, "license"):
|
|
licenseSection = sec
|
|
case strings.HasPrefix(sec.Name, "version"):
|
|
versionSection = sec
|
|
case strings.HasPrefix(sec.Name, "maps"):
|
|
sections[idx] = newElfSection(sec, mapSection)
|
|
case sec.Name == ".maps":
|
|
sections[idx] = newElfSection(sec, btfMapSection)
|
|
case sec.Name == ".bss" || sec.Name == ".data" || strings.HasPrefix(sec.Name, ".rodata"):
|
|
sections[idx] = newElfSection(sec, dataSection)
|
|
case sec.Type == elf.SHT_REL:
|
|
// Store relocations under the section index of the target
|
|
relSections[elf.SectionIndex(sec.Info)] = sec
|
|
case sec.Type == elf.SHT_PROGBITS && (sec.Flags&elf.SHF_EXECINSTR) != 0 && sec.Size > 0:
|
|
sections[idx] = newElfSection(sec, programSection)
|
|
}
|
|
}
|
|
|
|
license, err := loadLicense(licenseSection)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("load license: %w", err)
|
|
}
|
|
|
|
version, err := loadVersion(versionSection, f.ByteOrder)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("load version: %w", err)
|
|
}
|
|
|
|
btfSpec, btfExtInfo, err := btf.LoadSpecAndExtInfosFromReader(rd)
|
|
if err != nil && !errors.Is(err, btf.ErrNotFound) {
|
|
return nil, fmt.Errorf("load BTF: %w", err)
|
|
}
|
|
|
|
ec := &elfCode{
|
|
SafeELFFile: f,
|
|
sections: sections,
|
|
license: license,
|
|
version: version,
|
|
btf: btfSpec,
|
|
extInfo: btfExtInfo,
|
|
}
|
|
|
|
symbols, err := f.Symbols()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("load symbols: %v", err)
|
|
}
|
|
|
|
ec.assignSymbols(symbols)
|
|
|
|
if err := ec.loadRelocations(relSections, symbols); err != nil {
|
|
return nil, fmt.Errorf("load relocations: %w", err)
|
|
}
|
|
|
|
// Collect all the various ways to define maps.
|
|
maps := make(map[string]*MapSpec)
|
|
if err := ec.loadMaps(maps); err != nil {
|
|
return nil, fmt.Errorf("load maps: %w", err)
|
|
}
|
|
|
|
if err := ec.loadBTFMaps(maps); err != nil {
|
|
return nil, fmt.Errorf("load BTF maps: %w", err)
|
|
}
|
|
|
|
if err := ec.loadDataSections(maps); err != nil {
|
|
return nil, fmt.Errorf("load data sections: %w", err)
|
|
}
|
|
|
|
// Finally, collect programs and link them.
|
|
progs, err := ec.loadProgramSections()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("load programs: %w", err)
|
|
}
|
|
|
|
return &CollectionSpec{maps, progs, btfSpec, ec.ByteOrder}, nil
|
|
}
|
|
|
|
func loadLicense(sec *elf.Section) (string, error) {
|
|
if sec == nil {
|
|
return "", nil
|
|
}
|
|
|
|
data, err := sec.Data()
|
|
if err != nil {
|
|
return "", fmt.Errorf("section %s: %v", sec.Name, err)
|
|
}
|
|
return string(bytes.TrimRight(data, "\000")), nil
|
|
}
|
|
|
|
func loadVersion(sec *elf.Section, bo binary.ByteOrder) (uint32, error) {
|
|
if sec == nil {
|
|
return 0, nil
|
|
}
|
|
|
|
var version uint32
|
|
if err := binary.Read(sec.Open(), bo, &version); err != nil {
|
|
return 0, fmt.Errorf("section %s: %v", sec.Name, err)
|
|
}
|
|
return version, nil
|
|
}
|
|
|
|
type elfSectionKind int
|
|
|
|
const (
|
|
undefSection elfSectionKind = iota
|
|
mapSection
|
|
btfMapSection
|
|
programSection
|
|
dataSection
|
|
)
|
|
|
|
type elfSection struct {
|
|
*elf.Section
|
|
kind elfSectionKind
|
|
// Offset from the start of the section to a symbol
|
|
symbols map[uint64]elf.Symbol
|
|
// Offset from the start of the section to a relocation, which points at
|
|
// a symbol in another section.
|
|
relocations map[uint64]elf.Symbol
|
|
// The number of relocations pointing at this section.
|
|
references int
|
|
}
|
|
|
|
func newElfSection(section *elf.Section, kind elfSectionKind) *elfSection {
|
|
return &elfSection{
|
|
section,
|
|
kind,
|
|
make(map[uint64]elf.Symbol),
|
|
make(map[uint64]elf.Symbol),
|
|
0,
|
|
}
|
|
}
|
|
|
|
// assignSymbols takes a list of symbols and assigns them to their
|
|
// respective sections, indexed by name.
|
|
func (ec *elfCode) assignSymbols(symbols []elf.Symbol) {
|
|
for _, symbol := range symbols {
|
|
symType := elf.ST_TYPE(symbol.Info)
|
|
symSection := ec.sections[symbol.Section]
|
|
if symSection == nil {
|
|
continue
|
|
}
|
|
|
|
// Anonymous symbols only occur in debug sections which we don't process
|
|
// relocations for. Anonymous symbols are not referenced from other sections.
|
|
if symbol.Name == "" {
|
|
continue
|
|
}
|
|
|
|
// Older versions of LLVM don't tag symbols correctly, so keep
|
|
// all NOTYPE ones.
|
|
switch symSection.kind {
|
|
case mapSection, btfMapSection, dataSection:
|
|
if symType != elf.STT_NOTYPE && symType != elf.STT_OBJECT {
|
|
continue
|
|
}
|
|
case programSection:
|
|
if symType != elf.STT_NOTYPE && symType != elf.STT_FUNC {
|
|
continue
|
|
}
|
|
// LLVM emits LBB_ (Local Basic Block) symbols that seem to be jump
|
|
// targets within sections, but BPF has no use for them.
|
|
if symType == elf.STT_NOTYPE && elf.ST_BIND(symbol.Info) == elf.STB_LOCAL &&
|
|
strings.HasPrefix(symbol.Name, "LBB") {
|
|
continue
|
|
}
|
|
// Only collect symbols that occur in program/maps/data sections.
|
|
default:
|
|
continue
|
|
}
|
|
|
|
symSection.symbols[symbol.Value] = symbol
|
|
}
|
|
}
|
|
|
|
// loadRelocations iterates .rel* sections and extracts relocation entries for
|
|
// sections of interest. Makes sure relocations point at valid sections.
|
|
func (ec *elfCode) loadRelocations(relSections map[elf.SectionIndex]*elf.Section, symbols []elf.Symbol) error {
|
|
for idx, relSection := range relSections {
|
|
section := ec.sections[idx]
|
|
if section == nil {
|
|
continue
|
|
}
|
|
|
|
rels, err := ec.loadSectionRelocations(relSection, symbols)
|
|
if err != nil {
|
|
return fmt.Errorf("relocation for section %q: %w", section.Name, err)
|
|
}
|
|
|
|
for _, rel := range rels {
|
|
target := ec.sections[rel.Section]
|
|
if target == nil {
|
|
return fmt.Errorf("section %q: reference to %q in section %s: %w", section.Name, rel.Name, rel.Section, ErrNotSupported)
|
|
}
|
|
|
|
if target.Flags&elf.SHF_STRINGS > 0 {
|
|
return fmt.Errorf("section %q: string is not stack allocated: %w", section.Name, ErrNotSupported)
|
|
}
|
|
|
|
target.references++
|
|
}
|
|
|
|
section.relocations = rels
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// loadProgramSections iterates ec's sections and emits a ProgramSpec
|
|
// for each function it finds.
|
|
//
|
|
// The resulting map is indexed by function name.
|
|
func (ec *elfCode) loadProgramSections() (map[string]*ProgramSpec, error) {
|
|
|
|
progs := make(map[string]*ProgramSpec)
|
|
|
|
// Generate a ProgramSpec for each function found in each program section.
|
|
var export []string
|
|
for _, sec := range ec.sections {
|
|
if sec.kind != programSection {
|
|
continue
|
|
}
|
|
|
|
if len(sec.symbols) == 0 {
|
|
return nil, fmt.Errorf("section %v: missing symbols", sec.Name)
|
|
}
|
|
|
|
funcs, err := ec.loadFunctions(sec)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("section %v: %w", sec.Name, err)
|
|
}
|
|
|
|
progType, attachType, progFlags, attachTo := getProgType(sec.Name)
|
|
|
|
for name, insns := range funcs {
|
|
spec := &ProgramSpec{
|
|
Name: name,
|
|
Type: progType,
|
|
Flags: progFlags,
|
|
AttachType: attachType,
|
|
AttachTo: attachTo,
|
|
SectionName: sec.Name,
|
|
License: ec.license,
|
|
KernelVersion: ec.version,
|
|
Instructions: insns,
|
|
ByteOrder: ec.ByteOrder,
|
|
BTF: ec.btf,
|
|
}
|
|
|
|
// Function names must be unique within a single ELF blob.
|
|
if progs[name] != nil {
|
|
return nil, fmt.Errorf("duplicate program name %s", name)
|
|
}
|
|
progs[name] = spec
|
|
|
|
if spec.SectionName != ".text" {
|
|
export = append(export, name)
|
|
}
|
|
}
|
|
}
|
|
|
|
flattenPrograms(progs, export)
|
|
|
|
// Hide programs (e.g. library functions) that were not explicitly emitted
|
|
// to an ELF section. These could be exposed in a separate CollectionSpec
|
|
// field later to allow them to be modified.
|
|
for n, p := range progs {
|
|
if p.SectionName == ".text" {
|
|
delete(progs, n)
|
|
}
|
|
}
|
|
|
|
return progs, nil
|
|
}
|
|
|
|
// loadFunctions extracts instruction streams from the given program section
|
|
// starting at each symbol in the section. The section's symbols must already
|
|
// be narrowed down to STT_NOTYPE (emitted by clang <8) or STT_FUNC.
|
|
//
|
|
// The resulting map is indexed by function name.
|
|
func (ec *elfCode) loadFunctions(section *elfSection) (map[string]asm.Instructions, error) {
|
|
r := bufio.NewReader(section.Open())
|
|
|
|
// Decode the section's instruction stream.
|
|
var insns asm.Instructions
|
|
if err := insns.Unmarshal(r, ec.ByteOrder); err != nil {
|
|
return nil, fmt.Errorf("decoding instructions for section %s: %w", section.Name, err)
|
|
}
|
|
if len(insns) == 0 {
|
|
return nil, fmt.Errorf("no instructions found in section %s", section.Name)
|
|
}
|
|
|
|
iter := insns.Iterate()
|
|
for iter.Next() {
|
|
ins := iter.Ins
|
|
offset := iter.Offset.Bytes()
|
|
|
|
// Tag Symbol Instructions.
|
|
if sym, ok := section.symbols[offset]; ok {
|
|
*ins = ins.WithSymbol(sym.Name)
|
|
}
|
|
|
|
// Apply any relocations for the current instruction.
|
|
// If no relocation is present, resolve any section-relative function calls.
|
|
if rel, ok := section.relocations[offset]; ok {
|
|
if err := ec.relocateInstruction(ins, rel); err != nil {
|
|
return nil, fmt.Errorf("offset %d: relocating instruction: %w", offset, err)
|
|
}
|
|
} else {
|
|
if err := referenceRelativeJump(ins, offset, section.symbols); err != nil {
|
|
return nil, fmt.Errorf("offset %d: resolving relative jump: %w", offset, err)
|
|
}
|
|
}
|
|
}
|
|
|
|
if ec.extInfo != nil {
|
|
ec.extInfo.Assign(insns, section.Name)
|
|
}
|
|
|
|
return splitSymbols(insns)
|
|
}
|
|
|
|
// referenceRelativeJump turns a relative jump to another bpf subprogram within
|
|
// the same ELF section into a Reference Instruction.
|
|
//
|
|
// Up to LLVM 9, calls to subprograms within the same ELF section are sometimes
|
|
// encoded using relative jumps instead of relocation entries. These jumps go
|
|
// out of bounds of the current program, so their targets must be memoized
|
|
// before the section's instruction stream is split.
|
|
//
|
|
// The relative jump Constant is blinded to -1 and the target Symbol is set as
|
|
// the Instruction's Reference so it can be resolved by the linker.
|
|
func referenceRelativeJump(ins *asm.Instruction, offset uint64, symbols map[uint64]elf.Symbol) error {
|
|
if !ins.IsFunctionReference() || ins.Constant == -1 {
|
|
return nil
|
|
}
|
|
|
|
tgt := jumpTarget(offset, *ins)
|
|
sym := symbols[tgt].Name
|
|
if sym == "" {
|
|
return fmt.Errorf("no jump target found at offset %d", tgt)
|
|
}
|
|
|
|
*ins = ins.WithReference(sym)
|
|
ins.Constant = -1
|
|
|
|
return nil
|
|
}
|
|
|
|
// jumpTarget takes ins' offset within an instruction stream (in bytes)
|
|
// and returns its absolute jump destination (in bytes) within the
|
|
// instruction stream.
|
|
func jumpTarget(offset uint64, ins asm.Instruction) uint64 {
|
|
// A relative jump instruction describes the amount of raw BPF instructions
|
|
// to jump, convert the offset into bytes.
|
|
dest := ins.Constant * asm.InstructionSize
|
|
|
|
// The starting point of the jump is the end of the current instruction.
|
|
dest += int64(offset + asm.InstructionSize)
|
|
|
|
if dest < 0 {
|
|
return 0
|
|
}
|
|
|
|
return uint64(dest)
|
|
}
|
|
|
|
func (ec *elfCode) relocateInstruction(ins *asm.Instruction, rel elf.Symbol) error {
|
|
var (
|
|
typ = elf.ST_TYPE(rel.Info)
|
|
bind = elf.ST_BIND(rel.Info)
|
|
name = rel.Name
|
|
)
|
|
|
|
target := ec.sections[rel.Section]
|
|
|
|
switch target.kind {
|
|
case mapSection, btfMapSection:
|
|
if bind != elf.STB_GLOBAL {
|
|
return fmt.Errorf("possible erroneous static qualifier on map definition: found reference to %q", name)
|
|
}
|
|
|
|
if typ != elf.STT_OBJECT && typ != elf.STT_NOTYPE {
|
|
// STT_NOTYPE is generated on clang < 8 which doesn't tag
|
|
// relocations appropriately.
|
|
return fmt.Errorf("map load: incorrect relocation type %v", typ)
|
|
}
|
|
|
|
ins.Src = asm.PseudoMapFD
|
|
|
|
case dataSection:
|
|
var offset uint32
|
|
switch typ {
|
|
case elf.STT_SECTION:
|
|
if bind != elf.STB_LOCAL {
|
|
return fmt.Errorf("direct load: %s: unsupported section relocation %s", name, bind)
|
|
}
|
|
|
|
// This is really a reference to a static symbol, which clang doesn't
|
|
// emit a symbol table entry for. Instead it encodes the offset in
|
|
// the instruction itself.
|
|
offset = uint32(uint64(ins.Constant))
|
|
|
|
case elf.STT_OBJECT:
|
|
// LLVM 9 emits OBJECT-LOCAL symbols for anonymous constants.
|
|
if bind != elf.STB_GLOBAL && bind != elf.STB_LOCAL {
|
|
return fmt.Errorf("direct load: %s: unsupported object relocation %s", name, bind)
|
|
}
|
|
|
|
offset = uint32(rel.Value)
|
|
|
|
case elf.STT_NOTYPE:
|
|
// LLVM 7 emits NOTYPE-LOCAL symbols for anonymous constants.
|
|
if bind != elf.STB_LOCAL {
|
|
return fmt.Errorf("direct load: %s: unsupported untyped relocation %s", name, bind)
|
|
}
|
|
|
|
offset = uint32(rel.Value)
|
|
|
|
default:
|
|
return fmt.Errorf("incorrect relocation type %v for direct map load", typ)
|
|
}
|
|
|
|
// We rely on using the name of the data section as the reference. It
|
|
// would be nicer to keep the real name in case of an STT_OBJECT, but
|
|
// it's not clear how to encode that into Instruction.
|
|
name = target.Name
|
|
|
|
// The kernel expects the offset in the second basic BPF instruction.
|
|
ins.Constant = int64(uint64(offset) << 32)
|
|
ins.Src = asm.PseudoMapValue
|
|
|
|
case programSection:
|
|
switch opCode := ins.OpCode; {
|
|
case opCode.JumpOp() == asm.Call:
|
|
if ins.Src != asm.PseudoCall {
|
|
return fmt.Errorf("call: %s: incorrect source register", name)
|
|
}
|
|
|
|
switch typ {
|
|
case elf.STT_NOTYPE, elf.STT_FUNC:
|
|
if bind != elf.STB_GLOBAL {
|
|
return fmt.Errorf("call: %s: unsupported binding: %s", name, bind)
|
|
}
|
|
|
|
case elf.STT_SECTION:
|
|
if bind != elf.STB_LOCAL {
|
|
return fmt.Errorf("call: %s: unsupported binding: %s", name, bind)
|
|
}
|
|
|
|
// The function we want to call is in the indicated section,
|
|
// at the offset encoded in the instruction itself. Reverse
|
|
// the calculation to find the real function we're looking for.
|
|
// A value of -1 references the first instruction in the section.
|
|
offset := int64(int32(ins.Constant)+1) * asm.InstructionSize
|
|
sym, ok := target.symbols[uint64(offset)]
|
|
if !ok {
|
|
return fmt.Errorf("call: no symbol at offset %d", offset)
|
|
}
|
|
|
|
name = sym.Name
|
|
ins.Constant = -1
|
|
|
|
default:
|
|
return fmt.Errorf("call: %s: invalid symbol type %s", name, typ)
|
|
}
|
|
case opCode.IsDWordLoad():
|
|
switch typ {
|
|
case elf.STT_FUNC:
|
|
if bind != elf.STB_GLOBAL {
|
|
return fmt.Errorf("load: %s: unsupported binding: %s", name, bind)
|
|
}
|
|
|
|
case elf.STT_SECTION:
|
|
if bind != elf.STB_LOCAL {
|
|
return fmt.Errorf("load: %s: unsupported binding: %s", name, bind)
|
|
}
|
|
|
|
// ins.Constant already contains the offset in bytes from the
|
|
// start of the section. This is different than a call to a
|
|
// static function.
|
|
|
|
default:
|
|
return fmt.Errorf("load: %s: invalid symbol type %s", name, typ)
|
|
}
|
|
|
|
sym, ok := target.symbols[uint64(ins.Constant)]
|
|
if !ok {
|
|
return fmt.Errorf("load: no symbol at offset %d", ins.Constant)
|
|
}
|
|
|
|
name = sym.Name
|
|
ins.Constant = -1
|
|
ins.Src = asm.PseudoFunc
|
|
|
|
default:
|
|
return fmt.Errorf("neither a call nor a load instruction: %v", ins)
|
|
}
|
|
|
|
case undefSection:
|
|
if bind != elf.STB_GLOBAL {
|
|
return fmt.Errorf("asm relocation: %s: unsupported binding: %s", name, bind)
|
|
}
|
|
|
|
if typ != elf.STT_NOTYPE {
|
|
return fmt.Errorf("asm relocation: %s: unsupported type %s", name, typ)
|
|
}
|
|
|
|
// There is nothing to do here but set ins.Reference.
|
|
|
|
default:
|
|
return fmt.Errorf("relocation to %q: %w", target.Name, ErrNotSupported)
|
|
}
|
|
|
|
*ins = ins.WithReference(name)
|
|
return nil
|
|
}
|
|
|
|
func (ec *elfCode) loadMaps(maps map[string]*MapSpec) error {
|
|
for _, sec := range ec.sections {
|
|
if sec.kind != mapSection {
|
|
continue
|
|
}
|
|
|
|
nSym := len(sec.symbols)
|
|
if nSym == 0 {
|
|
return fmt.Errorf("section %v: no symbols", sec.Name)
|
|
}
|
|
|
|
if sec.Size%uint64(nSym) != 0 {
|
|
return fmt.Errorf("section %v: map descriptors are not of equal size", sec.Name)
|
|
}
|
|
|
|
var (
|
|
r = bufio.NewReader(sec.Open())
|
|
size = sec.Size / uint64(nSym)
|
|
)
|
|
for i, offset := 0, uint64(0); i < nSym; i, offset = i+1, offset+size {
|
|
mapSym, ok := sec.symbols[offset]
|
|
if !ok {
|
|
return fmt.Errorf("section %s: missing symbol for map at offset %d", sec.Name, offset)
|
|
}
|
|
|
|
mapName := mapSym.Name
|
|
if maps[mapName] != nil {
|
|
return fmt.Errorf("section %v: map %v already exists", sec.Name, mapSym)
|
|
}
|
|
|
|
lr := io.LimitReader(r, int64(size))
|
|
|
|
spec := MapSpec{
|
|
Name: SanitizeName(mapName, -1),
|
|
}
|
|
switch {
|
|
case binary.Read(lr, ec.ByteOrder, &spec.Type) != nil:
|
|
return fmt.Errorf("map %s: missing type", mapName)
|
|
case binary.Read(lr, ec.ByteOrder, &spec.KeySize) != nil:
|
|
return fmt.Errorf("map %s: missing key size", mapName)
|
|
case binary.Read(lr, ec.ByteOrder, &spec.ValueSize) != nil:
|
|
return fmt.Errorf("map %s: missing value size", mapName)
|
|
case binary.Read(lr, ec.ByteOrder, &spec.MaxEntries) != nil:
|
|
return fmt.Errorf("map %s: missing max entries", mapName)
|
|
case binary.Read(lr, ec.ByteOrder, &spec.Flags) != nil:
|
|
return fmt.Errorf("map %s: missing flags", mapName)
|
|
}
|
|
|
|
extra, err := io.ReadAll(lr)
|
|
if err != nil {
|
|
return fmt.Errorf("map %s: reading map tail: %w", mapName, err)
|
|
}
|
|
if len(extra) > 0 {
|
|
spec.Extra = bytes.NewReader(extra)
|
|
}
|
|
|
|
if err := spec.clampPerfEventArraySize(); err != nil {
|
|
return fmt.Errorf("map %s: %w", mapName, err)
|
|
}
|
|
|
|
maps[mapName] = &spec
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// loadBTFMaps iterates over all ELF sections marked as BTF map sections
|
|
// (like .maps) and parses them into MapSpecs. Dump the .maps section and
|
|
// any relocations with `readelf -x .maps -r <elf_file>`.
|
|
func (ec *elfCode) loadBTFMaps(maps map[string]*MapSpec) error {
|
|
for _, sec := range ec.sections {
|
|
if sec.kind != btfMapSection {
|
|
continue
|
|
}
|
|
|
|
if ec.btf == nil {
|
|
return fmt.Errorf("missing BTF")
|
|
}
|
|
|
|
// Each section must appear as a DataSec in the ELF's BTF blob.
|
|
var ds *btf.Datasec
|
|
if err := ec.btf.TypeByName(sec.Name, &ds); err != nil {
|
|
return fmt.Errorf("cannot find section '%s' in BTF: %w", sec.Name, err)
|
|
}
|
|
|
|
// Open a Reader to the ELF's raw section bytes so we can assert that all
|
|
// of them are zero on a per-map (per-Var) basis. For now, the section's
|
|
// sole purpose is to receive relocations, so all must be zero.
|
|
rs := sec.Open()
|
|
|
|
for _, vs := range ds.Vars {
|
|
// BPF maps are declared as and assigned to global variables,
|
|
// so iterate over each Var in the DataSec and validate their types.
|
|
v, ok := vs.Type.(*btf.Var)
|
|
if !ok {
|
|
return fmt.Errorf("section %v: unexpected type %s", sec.Name, vs.Type)
|
|
}
|
|
name := string(v.Name)
|
|
|
|
// The BTF metadata for each Var contains the full length of the map
|
|
// declaration, so read the corresponding amount of bytes from the ELF.
|
|
// This way, we can pinpoint which map declaration contains unexpected
|
|
// (and therefore unsupported) data.
|
|
_, err := io.Copy(internal.DiscardZeroes{}, io.LimitReader(rs, int64(vs.Size)))
|
|
if err != nil {
|
|
return fmt.Errorf("section %v: map %s: initializing BTF map definitions: %w", sec.Name, name, internal.ErrNotSupported)
|
|
}
|
|
|
|
if maps[name] != nil {
|
|
return fmt.Errorf("section %v: map %s already exists", sec.Name, name)
|
|
}
|
|
|
|
// Each Var representing a BTF map definition contains a Struct.
|
|
mapStruct, ok := v.Type.(*btf.Struct)
|
|
if !ok {
|
|
return fmt.Errorf("expected struct, got %s", v.Type)
|
|
}
|
|
|
|
mapSpec, err := mapSpecFromBTF(sec, &vs, mapStruct, ec.btf, name, false)
|
|
if err != nil {
|
|
return fmt.Errorf("map %v: %w", name, err)
|
|
}
|
|
|
|
if err := mapSpec.clampPerfEventArraySize(); err != nil {
|
|
return fmt.Errorf("map %v: %w", name, err)
|
|
}
|
|
|
|
maps[name] = mapSpec
|
|
}
|
|
|
|
// Drain the ELF section reader to make sure all bytes are accounted for
|
|
// with BTF metadata.
|
|
i, err := io.Copy(io.Discard, rs)
|
|
if err != nil {
|
|
return fmt.Errorf("section %v: unexpected error reading remainder of ELF section: %w", sec.Name, err)
|
|
}
|
|
if i > 0 {
|
|
return fmt.Errorf("section %v: %d unexpected remaining bytes in ELF section, invalid BTF?", sec.Name, i)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// mapSpecFromBTF produces a MapSpec based on a btf.Struct def representing
|
|
// a BTF map definition. The name and spec arguments will be copied to the
|
|
// resulting MapSpec, and inner must be true on any resursive invocations.
|
|
func mapSpecFromBTF(es *elfSection, vs *btf.VarSecinfo, def *btf.Struct, spec *btf.Spec, name string, inner bool) (*MapSpec, error) {
|
|
var (
|
|
key, value btf.Type
|
|
keySize, valueSize uint32
|
|
mapType MapType
|
|
flags, maxEntries uint32
|
|
pinType PinType
|
|
innerMapSpec *MapSpec
|
|
contents []MapKV
|
|
err error
|
|
)
|
|
|
|
for i, member := range def.Members {
|
|
switch member.Name {
|
|
case "type":
|
|
mt, err := uintFromBTF(member.Type)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("can't get type: %w", err)
|
|
}
|
|
mapType = MapType(mt)
|
|
|
|
case "map_flags":
|
|
flags, err = uintFromBTF(member.Type)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("can't get BTF map flags: %w", err)
|
|
}
|
|
|
|
case "max_entries":
|
|
maxEntries, err = uintFromBTF(member.Type)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("can't get BTF map max entries: %w", err)
|
|
}
|
|
|
|
case "key":
|
|
if keySize != 0 {
|
|
return nil, errors.New("both key and key_size given")
|
|
}
|
|
|
|
pk, ok := member.Type.(*btf.Pointer)
|
|
if !ok {
|
|
return nil, fmt.Errorf("key type is not a pointer: %T", member.Type)
|
|
}
|
|
|
|
key = pk.Target
|
|
|
|
size, err := btf.Sizeof(pk.Target)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("can't get size of BTF key: %w", err)
|
|
}
|
|
|
|
keySize = uint32(size)
|
|
|
|
case "value":
|
|
if valueSize != 0 {
|
|
return nil, errors.New("both value and value_size given")
|
|
}
|
|
|
|
vk, ok := member.Type.(*btf.Pointer)
|
|
if !ok {
|
|
return nil, fmt.Errorf("value type is not a pointer: %T", member.Type)
|
|
}
|
|
|
|
value = vk.Target
|
|
|
|
size, err := btf.Sizeof(vk.Target)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("can't get size of BTF value: %w", err)
|
|
}
|
|
|
|
valueSize = uint32(size)
|
|
|
|
case "key_size":
|
|
// Key needs to be nil and keySize needs to be 0 for key_size to be
|
|
// considered a valid member.
|
|
if key != nil || keySize != 0 {
|
|
return nil, errors.New("both key and key_size given")
|
|
}
|
|
|
|
keySize, err = uintFromBTF(member.Type)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("can't get BTF key size: %w", err)
|
|
}
|
|
|
|
case "value_size":
|
|
// Value needs to be nil and valueSize needs to be 0 for value_size to be
|
|
// considered a valid member.
|
|
if value != nil || valueSize != 0 {
|
|
return nil, errors.New("both value and value_size given")
|
|
}
|
|
|
|
valueSize, err = uintFromBTF(member.Type)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("can't get BTF value size: %w", err)
|
|
}
|
|
|
|
case "pinning":
|
|
if inner {
|
|
return nil, errors.New("inner maps can't be pinned")
|
|
}
|
|
|
|
pinning, err := uintFromBTF(member.Type)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("can't get pinning: %w", err)
|
|
}
|
|
|
|
pinType = PinType(pinning)
|
|
|
|
case "values":
|
|
// The 'values' field in BTF map definitions is used for declaring map
|
|
// value types that are references to other BPF objects, like other maps
|
|
// or programs. It is always expected to be an array of pointers.
|
|
if i != len(def.Members)-1 {
|
|
return nil, errors.New("'values' must be the last member in a BTF map definition")
|
|
}
|
|
|
|
if valueSize != 0 && valueSize != 4 {
|
|
return nil, errors.New("value_size must be 0 or 4")
|
|
}
|
|
valueSize = 4
|
|
|
|
valueType, err := resolveBTFArrayMacro(member.Type)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("can't resolve type of member 'values': %w", err)
|
|
}
|
|
|
|
switch t := valueType.(type) {
|
|
case *btf.Struct:
|
|
// The values member pointing to an array of structs means we're expecting
|
|
// a map-in-map declaration.
|
|
if mapType != ArrayOfMaps && mapType != HashOfMaps {
|
|
return nil, errors.New("outer map needs to be an array or a hash of maps")
|
|
}
|
|
if inner {
|
|
return nil, fmt.Errorf("nested inner maps are not supported")
|
|
}
|
|
|
|
// This inner map spec is used as a map template, but it needs to be
|
|
// created as a traditional map before it can be used to do so.
|
|
// libbpf names the inner map template '<outer_name>.inner', but we
|
|
// opted for _inner to simplify validation logic. (dots only supported
|
|
// on kernels 5.2 and up)
|
|
// Pass the BTF spec from the parent object, since both parent and
|
|
// child must be created from the same BTF blob (on kernels that support BTF).
|
|
innerMapSpec, err = mapSpecFromBTF(es, vs, t, spec, name+"_inner", true)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("can't parse BTF map definition of inner map: %w", err)
|
|
}
|
|
|
|
case *btf.FuncProto:
|
|
// The values member contains an array of function pointers, meaning an
|
|
// autopopulated PROG_ARRAY.
|
|
if mapType != ProgramArray {
|
|
return nil, errors.New("map needs to be a program array")
|
|
}
|
|
|
|
default:
|
|
return nil, fmt.Errorf("unsupported value type %q in 'values' field", t)
|
|
}
|
|
|
|
contents, err = resolveBTFValuesContents(es, vs, member)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("resolving values contents: %w", err)
|
|
}
|
|
|
|
default:
|
|
return nil, fmt.Errorf("unrecognized field %s in BTF map definition", member.Name)
|
|
}
|
|
}
|
|
|
|
if key == nil {
|
|
key = &btf.Void{}
|
|
}
|
|
if value == nil {
|
|
value = &btf.Void{}
|
|
}
|
|
|
|
return &MapSpec{
|
|
Name: SanitizeName(name, -1),
|
|
Type: MapType(mapType),
|
|
KeySize: keySize,
|
|
ValueSize: valueSize,
|
|
MaxEntries: maxEntries,
|
|
Flags: flags,
|
|
Key: key,
|
|
Value: value,
|
|
BTF: spec,
|
|
Pinning: pinType,
|
|
InnerMap: innerMapSpec,
|
|
Contents: contents,
|
|
}, nil
|
|
}
|
|
|
|
// uintFromBTF resolves the __uint macro, which is a pointer to a sized
|
|
// array, e.g. for int (*foo)[10], this function will return 10.
|
|
func uintFromBTF(typ btf.Type) (uint32, error) {
|
|
ptr, ok := typ.(*btf.Pointer)
|
|
if !ok {
|
|
return 0, fmt.Errorf("not a pointer: %v", typ)
|
|
}
|
|
|
|
arr, ok := ptr.Target.(*btf.Array)
|
|
if !ok {
|
|
return 0, fmt.Errorf("not a pointer to array: %v", typ)
|
|
}
|
|
|
|
return arr.Nelems, nil
|
|
}
|
|
|
|
// resolveBTFArrayMacro resolves the __array macro, which declares an array
|
|
// of pointers to a given type. This function returns the target Type of
|
|
// the pointers in the array.
|
|
func resolveBTFArrayMacro(typ btf.Type) (btf.Type, error) {
|
|
arr, ok := typ.(*btf.Array)
|
|
if !ok {
|
|
return nil, fmt.Errorf("not an array: %v", typ)
|
|
}
|
|
|
|
ptr, ok := arr.Type.(*btf.Pointer)
|
|
if !ok {
|
|
return nil, fmt.Errorf("not an array of pointers: %v", typ)
|
|
}
|
|
|
|
return ptr.Target, nil
|
|
}
|
|
|
|
// resolveBTFValuesContents resolves relocations into ELF sections belonging
|
|
// to btf.VarSecinfo's. This can be used on the 'values' member in BTF map
|
|
// definitions to extract static declarations of map contents.
|
|
func resolveBTFValuesContents(es *elfSection, vs *btf.VarSecinfo, member btf.Member) ([]MapKV, error) {
|
|
// The elements of a .values pointer array are not encoded in BTF.
|
|
// Instead, relocations are generated into each array index.
|
|
// However, it's possible to leave certain array indices empty, so all
|
|
// indices' offsets need to be checked for emitted relocations.
|
|
|
|
// The offset of the 'values' member within the _struct_ (in bits)
|
|
// is the starting point of the array. Convert to bytes. Add VarSecinfo
|
|
// offset to get the absolute position in the ELF blob.
|
|
start := member.Offset.Bytes() + vs.Offset
|
|
// 'values' is encoded in BTF as a zero (variable) length struct
|
|
// member, and its contents run until the end of the VarSecinfo.
|
|
// Add VarSecinfo offset to get the absolute position in the ELF blob.
|
|
end := vs.Size + vs.Offset
|
|
// The size of an address in this section. This determines the width of
|
|
// an index in the array.
|
|
align := uint32(es.SectionHeader.Addralign)
|
|
|
|
// Check if variable-length section is aligned.
|
|
if (end-start)%align != 0 {
|
|
return nil, errors.New("unaligned static values section")
|
|
}
|
|
elems := (end - start) / align
|
|
|
|
if elems == 0 {
|
|
return nil, nil
|
|
}
|
|
|
|
contents := make([]MapKV, 0, elems)
|
|
|
|
// k is the array index, off is its corresponding ELF section offset.
|
|
for k, off := uint32(0), start; k < elems; k, off = k+1, off+align {
|
|
r, ok := es.relocations[uint64(off)]
|
|
if !ok {
|
|
continue
|
|
}
|
|
|
|
// Relocation exists for the current offset in the ELF section.
|
|
// Emit a value stub based on the type of relocation to be replaced by
|
|
// a real fd later in the pipeline before populating the map.
|
|
// Map keys are encoded in MapKV entries, so empty array indices are
|
|
// skipped here.
|
|
switch t := elf.ST_TYPE(r.Info); t {
|
|
case elf.STT_FUNC:
|
|
contents = append(contents, MapKV{uint32(k), r.Name})
|
|
case elf.STT_OBJECT:
|
|
contents = append(contents, MapKV{uint32(k), r.Name})
|
|
default:
|
|
return nil, fmt.Errorf("unknown relocation type %v", t)
|
|
}
|
|
}
|
|
|
|
return contents, nil
|
|
}
|
|
|
|
func (ec *elfCode) loadDataSections(maps map[string]*MapSpec) error {
|
|
for _, sec := range ec.sections {
|
|
if sec.kind != dataSection {
|
|
continue
|
|
}
|
|
|
|
if sec.references == 0 {
|
|
// Prune data sections which are not referenced by any
|
|
// instructions.
|
|
continue
|
|
}
|
|
|
|
data, err := sec.Data()
|
|
if err != nil {
|
|
return fmt.Errorf("data section %s: can't get contents: %w", sec.Name, err)
|
|
}
|
|
|
|
if uint64(len(data)) > math.MaxUint32 {
|
|
return fmt.Errorf("data section %s: contents exceed maximum size", sec.Name)
|
|
}
|
|
|
|
mapSpec := &MapSpec{
|
|
Name: SanitizeName(sec.Name, -1),
|
|
Type: Array,
|
|
KeySize: 4,
|
|
ValueSize: uint32(len(data)),
|
|
MaxEntries: 1,
|
|
Contents: []MapKV{{uint32(0), data}},
|
|
}
|
|
|
|
// It is possible for a data section to exist without a corresponding BTF Datasec
|
|
// if it only contains anonymous values like macro-defined arrays.
|
|
if ec.btf != nil {
|
|
var ds *btf.Datasec
|
|
if ec.btf.TypeByName(sec.Name, &ds) == nil {
|
|
// Assign the spec's key and BTF only if the Datasec lookup was successful.
|
|
mapSpec.BTF = ec.btf
|
|
mapSpec.Key = &btf.Void{}
|
|
mapSpec.Value = ds
|
|
}
|
|
}
|
|
|
|
switch n := sec.Name; {
|
|
case strings.HasPrefix(n, ".rodata"):
|
|
mapSpec.Flags = unix.BPF_F_RDONLY_PROG
|
|
mapSpec.Freeze = true
|
|
case n == ".bss":
|
|
// The kernel already zero-initializes the map
|
|
mapSpec.Contents = nil
|
|
}
|
|
|
|
maps[sec.Name] = mapSpec
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func getProgType(sectionName string) (ProgramType, AttachType, uint32, string) {
|
|
types := []struct {
|
|
prefix string
|
|
progType ProgramType
|
|
attachType AttachType
|
|
progFlags uint32
|
|
}{
|
|
// Please update the types from libbpf.c and follow the order of it.
|
|
// https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/lib/bpf/libbpf.c
|
|
{"socket", SocketFilter, AttachNone, 0},
|
|
{"sk_reuseport/migrate", SkReuseport, AttachSkReuseportSelectOrMigrate, 0},
|
|
{"sk_reuseport", SkReuseport, AttachSkReuseportSelect, 0},
|
|
{"kprobe/", Kprobe, AttachNone, 0},
|
|
{"uprobe/", Kprobe, AttachNone, 0},
|
|
{"kretprobe/", Kprobe, AttachNone, 0},
|
|
{"uretprobe/", Kprobe, AttachNone, 0},
|
|
{"tc", SchedCLS, AttachNone, 0},
|
|
{"classifier", SchedCLS, AttachNone, 0},
|
|
{"action", SchedACT, AttachNone, 0},
|
|
{"tracepoint/", TracePoint, AttachNone, 0},
|
|
{"tp/", TracePoint, AttachNone, 0},
|
|
{"raw_tracepoint/", RawTracepoint, AttachNone, 0},
|
|
{"raw_tp/", RawTracepoint, AttachNone, 0},
|
|
{"raw_tracepoint.w/", RawTracepointWritable, AttachNone, 0},
|
|
{"raw_tp.w/", RawTracepointWritable, AttachNone, 0},
|
|
{"tp_btf/", Tracing, AttachTraceRawTp, 0},
|
|
{"fentry/", Tracing, AttachTraceFEntry, 0},
|
|
{"fmod_ret/", Tracing, AttachModifyReturn, 0},
|
|
{"fexit/", Tracing, AttachTraceFExit, 0},
|
|
{"fentry.s/", Tracing, AttachTraceFEntry, unix.BPF_F_SLEEPABLE},
|
|
{"fmod_ret.s/", Tracing, AttachModifyReturn, unix.BPF_F_SLEEPABLE},
|
|
{"fexit.s/", Tracing, AttachTraceFExit, unix.BPF_F_SLEEPABLE},
|
|
{"freplace/", Extension, AttachNone, 0},
|
|
{"lsm/", LSM, AttachLSMMac, 0},
|
|
{"lsm.s/", LSM, AttachLSMMac, unix.BPF_F_SLEEPABLE},
|
|
{"iter/", Tracing, AttachTraceIter, 0},
|
|
{"syscall", Syscall, AttachNone, 0},
|
|
{"xdp_devmap/", XDP, AttachXDPDevMap, 0},
|
|
{"xdp_cpumap/", XDP, AttachXDPCPUMap, 0},
|
|
{"xdp", XDP, AttachNone, 0},
|
|
{"perf_event", PerfEvent, AttachNone, 0},
|
|
{"lwt_in", LWTIn, AttachNone, 0},
|
|
{"lwt_out", LWTOut, AttachNone, 0},
|
|
{"lwt_xmit", LWTXmit, AttachNone, 0},
|
|
{"lwt_seg6local", LWTSeg6Local, AttachNone, 0},
|
|
{"cgroup_skb/ingress", CGroupSKB, AttachCGroupInetIngress, 0},
|
|
{"cgroup_skb/egress", CGroupSKB, AttachCGroupInetEgress, 0},
|
|
{"cgroup/skb", CGroupSKB, AttachNone, 0},
|
|
{"cgroup/sock_create", CGroupSock, AttachCGroupInetSockCreate, 0},
|
|
{"cgroup/sock_release", CGroupSock, AttachCgroupInetSockRelease, 0},
|
|
{"cgroup/sock", CGroupSock, AttachCGroupInetSockCreate, 0},
|
|
{"cgroup/post_bind4", CGroupSock, AttachCGroupInet4PostBind, 0},
|
|
{"cgroup/post_bind6", CGroupSock, AttachCGroupInet6PostBind, 0},
|
|
{"cgroup/dev", CGroupDevice, AttachCGroupDevice, 0},
|
|
{"sockops", SockOps, AttachCGroupSockOps, 0},
|
|
{"sk_skb/stream_parser", SkSKB, AttachSkSKBStreamParser, 0},
|
|
{"sk_skb/stream_verdict", SkSKB, AttachSkSKBStreamVerdict, 0},
|
|
{"sk_skb", SkSKB, AttachNone, 0},
|
|
{"sk_msg", SkMsg, AttachSkMsgVerdict, 0},
|
|
{"lirc_mode2", LircMode2, AttachLircMode2, 0},
|
|
{"flow_dissector", FlowDissector, AttachFlowDissector, 0},
|
|
{"cgroup/bind4", CGroupSockAddr, AttachCGroupInet4Bind, 0},
|
|
{"cgroup/bind6", CGroupSockAddr, AttachCGroupInet6Bind, 0},
|
|
{"cgroup/connect4", CGroupSockAddr, AttachCGroupInet4Connect, 0},
|
|
{"cgroup/connect6", CGroupSockAddr, AttachCGroupInet6Connect, 0},
|
|
{"cgroup/sendmsg4", CGroupSockAddr, AttachCGroupUDP4Sendmsg, 0},
|
|
{"cgroup/sendmsg6", CGroupSockAddr, AttachCGroupUDP6Sendmsg, 0},
|
|
{"cgroup/recvmsg4", CGroupSockAddr, AttachCGroupUDP4Recvmsg, 0},
|
|
{"cgroup/recvmsg6", CGroupSockAddr, AttachCGroupUDP6Recvmsg, 0},
|
|
{"cgroup/getpeername4", CGroupSockAddr, AttachCgroupInet4GetPeername, 0},
|
|
{"cgroup/getpeername6", CGroupSockAddr, AttachCgroupInet6GetPeername, 0},
|
|
{"cgroup/getsockname4", CGroupSockAddr, AttachCgroupInet4GetSockname, 0},
|
|
{"cgroup/getsockname6", CGroupSockAddr, AttachCgroupInet6GetSockname, 0},
|
|
{"cgroup/sysctl", CGroupSysctl, AttachCGroupSysctl, 0},
|
|
{"cgroup/getsockopt", CGroupSockopt, AttachCGroupGetsockopt, 0},
|
|
{"cgroup/setsockopt", CGroupSockopt, AttachCGroupSetsockopt, 0},
|
|
{"struct_ops+", StructOps, AttachNone, 0},
|
|
{"sk_lookup/", SkLookup, AttachSkLookup, 0},
|
|
|
|
{"seccomp", SocketFilter, AttachNone, 0},
|
|
}
|
|
|
|
for _, t := range types {
|
|
if !strings.HasPrefix(sectionName, t.prefix) {
|
|
continue
|
|
}
|
|
|
|
if !strings.HasSuffix(t.prefix, "/") {
|
|
return t.progType, t.attachType, t.progFlags, ""
|
|
}
|
|
|
|
return t.progType, t.attachType, t.progFlags, sectionName[len(t.prefix):]
|
|
}
|
|
|
|
return UnspecifiedProgram, AttachNone, 0, ""
|
|
}
|
|
|
|
func (ec *elfCode) loadSectionRelocations(sec *elf.Section, symbols []elf.Symbol) (map[uint64]elf.Symbol, error) {
|
|
rels := make(map[uint64]elf.Symbol)
|
|
|
|
if sec.Entsize < 16 {
|
|
return nil, fmt.Errorf("section %s: relocations are less than 16 bytes", sec.Name)
|
|
}
|
|
|
|
r := bufio.NewReader(sec.Open())
|
|
for off := uint64(0); off < sec.Size; off += sec.Entsize {
|
|
ent := io.LimitReader(r, int64(sec.Entsize))
|
|
|
|
var rel elf.Rel64
|
|
if binary.Read(ent, ec.ByteOrder, &rel) != nil {
|
|
return nil, fmt.Errorf("can't parse relocation at offset %v", off)
|
|
}
|
|
|
|
symNo := int(elf.R_SYM64(rel.Info) - 1)
|
|
if symNo >= len(symbols) {
|
|
return nil, fmt.Errorf("offset %d: symbol %d doesn't exist", off, symNo)
|
|
}
|
|
|
|
symbol := symbols[symNo]
|
|
rels[rel.Off] = symbol
|
|
}
|
|
|
|
return rels, nil
|
|
}
|