gotosocial/vendor/github.com/cilium/ebpf/btf/format.go
dependabot[bot] 57dc742c76
[chore]: Bump github.com/KimMachineGun/automemlimit from 0.2.4 to 0.2.5 (#1666)
Bumps [github.com/KimMachineGun/automemlimit](https://github.com/KimMachineGun/automemlimit) from 0.2.4 to 0.2.5.
- [Release notes](https://github.com/KimMachineGun/automemlimit/releases)
- [Commits](https://github.com/KimMachineGun/automemlimit/compare/v0.2.4...v0.2.5)

---
updated-dependencies:
- dependency-name: github.com/KimMachineGun/automemlimit
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-04-03 11:16:17 +02:00

319 lines
6.7 KiB
Go

package btf
import (
"errors"
"fmt"
"strings"
)
var errNestedTooDeep = errors.New("nested too deep")
// GoFormatter converts a Type to Go syntax.
//
// A zero GoFormatter is valid to use.
type GoFormatter struct {
w strings.Builder
// Types present in this map are referred to using the given name if they
// are encountered when outputting another type.
Names map[Type]string
// Identifier is called for each field of struct-like types. By default the
// field name is used as is.
Identifier func(string) string
// EnumIdentifier is called for each element of an enum. By default the
// name of the enum type is concatenated with Identifier(element).
EnumIdentifier func(name, element string) string
}
// TypeDeclaration generates a Go type declaration for a BTF type.
func (gf *GoFormatter) TypeDeclaration(name string, typ Type) (string, error) {
gf.w.Reset()
if err := gf.writeTypeDecl(name, typ); err != nil {
return "", err
}
return gf.w.String(), nil
}
func (gf *GoFormatter) identifier(s string) string {
if gf.Identifier != nil {
return gf.Identifier(s)
}
return s
}
func (gf *GoFormatter) enumIdentifier(name, element string) string {
if gf.EnumIdentifier != nil {
return gf.EnumIdentifier(name, element)
}
return name + gf.identifier(element)
}
// writeTypeDecl outputs a declaration of the given type.
//
// It encodes https://golang.org/ref/spec#Type_declarations:
//
// type foo struct { bar uint32; }
// type bar int32
func (gf *GoFormatter) writeTypeDecl(name string, typ Type) error {
if name == "" {
return fmt.Errorf("need a name for type %s", typ)
}
switch v := skipQualifiers(typ).(type) {
case *Enum:
fmt.Fprintf(&gf.w, "type %s ", name)
switch v.Size {
case 1:
gf.w.WriteString("int8")
case 2:
gf.w.WriteString("int16")
case 4:
gf.w.WriteString("int32")
case 8:
gf.w.WriteString("int64")
default:
return fmt.Errorf("%s: invalid enum size %d", typ, v.Size)
}
if len(v.Values) == 0 {
return nil
}
gf.w.WriteString("; const ( ")
for _, ev := range v.Values {
id := gf.enumIdentifier(name, ev.Name)
fmt.Fprintf(&gf.w, "%s %s = %d; ", id, name, ev.Value)
}
gf.w.WriteString(")")
return nil
default:
fmt.Fprintf(&gf.w, "type %s ", name)
return gf.writeTypeLit(v, 0)
}
}
// writeType outputs the name of a named type or a literal describing the type.
//
// It encodes https://golang.org/ref/spec#Types.
//
// foo (if foo is a named type)
// uint32
func (gf *GoFormatter) writeType(typ Type, depth int) error {
typ = skipQualifiers(typ)
name := gf.Names[typ]
if name != "" {
gf.w.WriteString(name)
return nil
}
return gf.writeTypeLit(typ, depth)
}
// writeTypeLit outputs a literal describing the type.
//
// The function ignores named types.
//
// It encodes https://golang.org/ref/spec#TypeLit.
//
// struct { bar uint32; }
// uint32
func (gf *GoFormatter) writeTypeLit(typ Type, depth int) error {
depth++
if depth > maxTypeDepth {
return errNestedTooDeep
}
var err error
switch v := skipQualifiers(typ).(type) {
case *Int:
gf.writeIntLit(v)
case *Enum:
gf.w.WriteString("int32")
case *Typedef:
err = gf.writeType(v.Type, depth)
case *Array:
fmt.Fprintf(&gf.w, "[%d]", v.Nelems)
err = gf.writeType(v.Type, depth)
case *Struct:
err = gf.writeStructLit(v.Size, v.Members, depth)
case *Union:
// Always choose the first member to represent the union in Go.
err = gf.writeStructLit(v.Size, v.Members[:1], depth)
case *Datasec:
err = gf.writeDatasecLit(v, depth)
default:
return fmt.Errorf("type %T: %w", v, ErrNotSupported)
}
if err != nil {
return fmt.Errorf("%s: %w", typ, err)
}
return nil
}
func (gf *GoFormatter) writeIntLit(i *Int) {
// NB: Encoding.IsChar is ignored.
if i.Encoding.IsBool() && i.Size == 1 {
gf.w.WriteString("bool")
return
}
bits := i.Size * 8
if i.Encoding.IsSigned() {
fmt.Fprintf(&gf.w, "int%d", bits)
} else {
fmt.Fprintf(&gf.w, "uint%d", bits)
}
}
func (gf *GoFormatter) writeStructLit(size uint32, members []Member, depth int) error {
gf.w.WriteString("struct { ")
prevOffset := uint32(0)
skippedBitfield := false
for i, m := range members {
if m.BitfieldSize > 0 {
skippedBitfield = true
continue
}
offset := m.Offset.Bytes()
if n := offset - prevOffset; skippedBitfield && n > 0 {
fmt.Fprintf(&gf.w, "_ [%d]byte /* unsupported bitfield */; ", n)
} else {
gf.writePadding(n)
}
size, err := Sizeof(m.Type)
if err != nil {
return fmt.Errorf("field %d: %w", i, err)
}
prevOffset = offset + uint32(size)
if err := gf.writeStructField(m, depth); err != nil {
return fmt.Errorf("field %d: %w", i, err)
}
}
gf.writePadding(size - prevOffset)
gf.w.WriteString("}")
return nil
}
func (gf *GoFormatter) writeStructField(m Member, depth int) error {
if m.BitfieldSize > 0 {
return fmt.Errorf("bitfields are not supported")
}
if m.Offset%8 != 0 {
return fmt.Errorf("unsupported offset %d", m.Offset)
}
if m.Name == "" {
// Special case a nested anonymous union like
// struct foo { union { int bar; int baz }; }
// by replacing the whole union with its first member.
union, ok := m.Type.(*Union)
if !ok {
return fmt.Errorf("anonymous fields are not supported")
}
if len(union.Members) == 0 {
return errors.New("empty anonymous union")
}
depth++
if depth > maxTypeDepth {
return errNestedTooDeep
}
m := union.Members[0]
size, err := Sizeof(m.Type)
if err != nil {
return err
}
if err := gf.writeStructField(m, depth); err != nil {
return err
}
gf.writePadding(union.Size - uint32(size))
return nil
}
fmt.Fprintf(&gf.w, "%s ", gf.identifier(m.Name))
if err := gf.writeType(m.Type, depth); err != nil {
return err
}
gf.w.WriteString("; ")
return nil
}
func (gf *GoFormatter) writeDatasecLit(ds *Datasec, depth int) error {
gf.w.WriteString("struct { ")
prevOffset := uint32(0)
for i, vsi := range ds.Vars {
v := vsi.Type.(*Var)
if v.Linkage != GlobalVar {
// Ignore static, extern, etc. for now.
continue
}
if v.Name == "" {
return fmt.Errorf("variable %d: empty name", i)
}
gf.writePadding(vsi.Offset - prevOffset)
prevOffset = vsi.Offset + vsi.Size
fmt.Fprintf(&gf.w, "%s ", gf.identifier(v.Name))
if err := gf.writeType(v.Type, depth); err != nil {
return fmt.Errorf("variable %d: %w", i, err)
}
gf.w.WriteString("; ")
}
gf.writePadding(ds.Size - prevOffset)
gf.w.WriteString("}")
return nil
}
func (gf *GoFormatter) writePadding(bytes uint32) {
if bytes > 0 {
fmt.Fprintf(&gf.w, "_ [%d]byte; ", bytes)
}
}
func skipQualifiers(typ Type) Type {
result := typ
for depth := 0; depth <= maxTypeDepth; depth++ {
switch v := (result).(type) {
case qualifier:
result = v.qualify()
default:
return result
}
}
return &cycle{typ}
}