mirror of
https://codeberg.org/superseriousbusiness/gotosocial.git
synced 2025-01-04 15:27:19 +03:00
98263a7de6
* start fixing up tests * fix up tests + automate with drone * fiddle with linting * messing about with drone.yml * some more fiddling * hmmm * add cache * add vendor directory * verbose * ci updates * update some little things * update sig
1213 lines
38 KiB
Go
1213 lines
38 KiB
Go
// Copyright 2015 Google Inc. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package s2
|
|
|
|
import (
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
)
|
|
|
|
// Polygon represents a sequence of zero or more loops; recall that the
|
|
// interior of a loop is defined to be its left-hand side (see Loop).
|
|
//
|
|
// When the polygon is initialized, the given loops are automatically converted
|
|
// into a canonical form consisting of "shells" and "holes". Shells and holes
|
|
// are both oriented CCW, and are nested hierarchically. The loops are
|
|
// reordered to correspond to a pre-order traversal of the nesting hierarchy.
|
|
//
|
|
// Polygons may represent any region of the sphere with a polygonal boundary,
|
|
// including the entire sphere (known as the "full" polygon). The full polygon
|
|
// consists of a single full loop (see Loop), whereas the empty polygon has no
|
|
// loops at all.
|
|
//
|
|
// Use FullPolygon() to construct a full polygon. The zero value of Polygon is
|
|
// treated as the empty polygon.
|
|
//
|
|
// Polygons have the following restrictions:
|
|
//
|
|
// - Loops may not cross, i.e. the boundary of a loop may not intersect
|
|
// both the interior and exterior of any other loop.
|
|
//
|
|
// - Loops may not share edges, i.e. if a loop contains an edge AB, then
|
|
// no other loop may contain AB or BA.
|
|
//
|
|
// - Loops may share vertices, however no vertex may appear twice in a
|
|
// single loop (see Loop).
|
|
//
|
|
// - No loop may be empty. The full loop may appear only in the full polygon.
|
|
type Polygon struct {
|
|
loops []*Loop
|
|
|
|
// index is a spatial index of all the polygon loops.
|
|
index *ShapeIndex
|
|
|
|
// hasHoles tracks if this polygon has at least one hole.
|
|
hasHoles bool
|
|
|
|
// numVertices keeps the running total of all of the vertices of the contained loops.
|
|
numVertices int
|
|
|
|
// numEdges tracks the total number of edges in all the loops in this polygon.
|
|
numEdges int
|
|
|
|
// bound is a conservative bound on all points contained by this loop.
|
|
// If l.ContainsPoint(P), then l.bound.ContainsPoint(P).
|
|
bound Rect
|
|
|
|
// Since bound is not exact, it is possible that a loop A contains
|
|
// another loop B whose bounds are slightly larger. subregionBound
|
|
// has been expanded sufficiently to account for this error, i.e.
|
|
// if A.Contains(B), then A.subregionBound.Contains(B.bound).
|
|
subregionBound Rect
|
|
|
|
// A slice where element i is the cumulative number of edges in the
|
|
// preceding loops in the polygon. This field is used for polygons that
|
|
// have a large number of loops, and may be empty for polygons with few loops.
|
|
cumulativeEdges []int
|
|
}
|
|
|
|
// PolygonFromLoops constructs a polygon from the given set of loops. The polygon
|
|
// interior consists of the points contained by an odd number of loops. (Recall
|
|
// that a loop contains the set of points on its left-hand side.)
|
|
//
|
|
// This method determines the loop nesting hierarchy and assigns every loop a
|
|
// depth. Shells have even depths, and holes have odd depths.
|
|
//
|
|
// Note: The given set of loops are reordered by this method so that the hierarchy
|
|
// can be traversed using Parent, LastDescendant and the loops depths.
|
|
func PolygonFromLoops(loops []*Loop) *Polygon {
|
|
p := &Polygon{}
|
|
// Empty polygons do not contain any loops, even the Empty loop.
|
|
if len(loops) == 1 && loops[0].IsEmpty() {
|
|
p.initLoopProperties()
|
|
return p
|
|
}
|
|
p.loops = loops
|
|
p.initNested()
|
|
return p
|
|
}
|
|
|
|
// PolygonFromOrientedLoops returns a Polygon from the given set of loops,
|
|
// like PolygonFromLoops. It expects loops to be oriented such that the polygon
|
|
// interior is on the left-hand side of all loops. This implies that shells
|
|
// and holes should have opposite orientations in the input to this method.
|
|
// (During initialization, loops representing holes will automatically be
|
|
// inverted.)
|
|
func PolygonFromOrientedLoops(loops []*Loop) *Polygon {
|
|
// Here is the algorithm:
|
|
//
|
|
// 1. Remember which of the given loops contain OriginPoint.
|
|
//
|
|
// 2. Invert loops as necessary to ensure that they are nestable (i.e., no
|
|
// loop contains the complement of any other loop). This may result in a
|
|
// set of loops corresponding to the complement of the given polygon, but
|
|
// we will fix that problem later.
|
|
//
|
|
// We make the loops nestable by first normalizing all the loops (i.e.,
|
|
// inverting any loops whose turning angle is negative). This handles
|
|
// all loops except those whose turning angle is very close to zero
|
|
// (within the maximum error tolerance). Any such loops are inverted if
|
|
// and only if they contain OriginPoint(). (In theory this step is only
|
|
// necessary if there are at least two such loops.) The resulting set of
|
|
// loops is guaranteed to be nestable.
|
|
//
|
|
// 3. Build the polygon. This yields either the desired polygon or its
|
|
// complement.
|
|
//
|
|
// 4. If there is at least one loop, we find a loop L that is adjacent to
|
|
// OriginPoint() (where "adjacent" means that there exists a path
|
|
// connecting OriginPoint() to some vertex of L such that the path does
|
|
// not cross any loop). There may be a single such adjacent loop, or
|
|
// there may be several (in which case they should all have the same
|
|
// contains_origin() value). We choose L to be the loop containing the
|
|
// origin whose depth is greatest, or loop(0) (a top-level shell) if no
|
|
// such loop exists.
|
|
//
|
|
// 5. If (L originally contained origin) != (polygon contains origin), we
|
|
// invert the polygon. This is done by inverting a top-level shell whose
|
|
// turning angle is minimal and then fixing the nesting hierarchy. Note
|
|
// that because we normalized all the loops initially, this step is only
|
|
// necessary if the polygon requires at least one non-normalized loop to
|
|
// represent it.
|
|
|
|
containedOrigin := make(map[*Loop]bool)
|
|
for _, l := range loops {
|
|
containedOrigin[l] = l.ContainsOrigin()
|
|
}
|
|
|
|
for _, l := range loops {
|
|
angle := l.TurningAngle()
|
|
if math.Abs(angle) > l.turningAngleMaxError() {
|
|
// Normalize the loop.
|
|
if angle < 0 {
|
|
l.Invert()
|
|
}
|
|
} else {
|
|
// Ensure that the loop does not contain the origin.
|
|
if l.ContainsOrigin() {
|
|
l.Invert()
|
|
}
|
|
}
|
|
}
|
|
|
|
p := PolygonFromLoops(loops)
|
|
|
|
if p.NumLoops() > 0 {
|
|
originLoop := p.Loop(0)
|
|
polygonContainsOrigin := false
|
|
for _, l := range p.Loops() {
|
|
if l.ContainsOrigin() {
|
|
polygonContainsOrigin = !polygonContainsOrigin
|
|
|
|
originLoop = l
|
|
}
|
|
}
|
|
if containedOrigin[originLoop] != polygonContainsOrigin {
|
|
p.Invert()
|
|
}
|
|
}
|
|
|
|
return p
|
|
}
|
|
|
|
// Invert inverts the polygon (replaces it by its complement).
|
|
func (p *Polygon) Invert() {
|
|
// Inverting any one loop will invert the polygon. The best loop to invert
|
|
// is the one whose area is largest, since this yields the smallest area
|
|
// after inversion. The loop with the largest area is always at depth 0.
|
|
// The descendents of this loop all have their depth reduced by 1, while the
|
|
// former siblings of this loop all have their depth increased by 1.
|
|
|
|
// The empty and full polygons are handled specially.
|
|
if p.IsEmpty() {
|
|
*p = *FullPolygon()
|
|
p.initLoopProperties()
|
|
return
|
|
}
|
|
if p.IsFull() {
|
|
*p = Polygon{}
|
|
p.initLoopProperties()
|
|
return
|
|
}
|
|
|
|
// Find the loop whose area is largest (i.e., whose turning angle is
|
|
// smallest), minimizing calls to TurningAngle(). In particular, for
|
|
// polygons with a single shell at level 0 there is no need to call
|
|
// TurningAngle() at all. (This method is relatively expensive.)
|
|
best := 0
|
|
const none = 10.0 // Flag that means "not computed yet"
|
|
bestAngle := none
|
|
for i := 1; i < p.NumLoops(); i++ {
|
|
if p.Loop(i).depth != 0 {
|
|
continue
|
|
}
|
|
// We defer computing the turning angle of loop 0 until we discover
|
|
// that the polygon has another top-level shell.
|
|
if bestAngle == none {
|
|
bestAngle = p.Loop(best).TurningAngle()
|
|
}
|
|
angle := p.Loop(i).TurningAngle()
|
|
// We break ties deterministically in order to avoid having the output
|
|
// depend on the input order of the loops.
|
|
if angle < bestAngle || (angle == bestAngle && compareLoops(p.Loop(i), p.Loop(best)) < 0) {
|
|
best = i
|
|
bestAngle = angle
|
|
}
|
|
}
|
|
// Build the new loops vector, starting with the inverted loop.
|
|
p.Loop(best).Invert()
|
|
newLoops := make([]*Loop, 0, p.NumLoops())
|
|
// Add the former siblings of this loop as descendants.
|
|
lastBest := p.LastDescendant(best)
|
|
newLoops = append(newLoops, p.Loop(best))
|
|
for i, l := range p.Loops() {
|
|
if i < best || i > lastBest {
|
|
l.depth++
|
|
newLoops = append(newLoops, l)
|
|
}
|
|
}
|
|
// Add the former children of this loop as siblings.
|
|
for i, l := range p.Loops() {
|
|
if i > best && i <= lastBest {
|
|
l.depth--
|
|
newLoops = append(newLoops, l)
|
|
}
|
|
}
|
|
|
|
p.loops = newLoops
|
|
p.initLoopProperties()
|
|
}
|
|
|
|
// Defines a total ordering on Loops that does not depend on the cyclic
|
|
// order of loop vertices. This function is used to choose which loop to
|
|
// invert in the case where several loops have exactly the same area.
|
|
func compareLoops(a, b *Loop) int {
|
|
if na, nb := a.NumVertices(), b.NumVertices(); na != nb {
|
|
return na - nb
|
|
}
|
|
ai, aDir := a.CanonicalFirstVertex()
|
|
bi, bDir := b.CanonicalFirstVertex()
|
|
if aDir != bDir {
|
|
return aDir - bDir
|
|
}
|
|
for n := a.NumVertices() - 1; n >= 0; n, ai, bi = n-1, ai+aDir, bi+bDir {
|
|
if cmp := a.Vertex(ai).Cmp(b.Vertex(bi).Vector); cmp != 0 {
|
|
return cmp
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// PolygonFromCell returns a Polygon from a single loop created from the given Cell.
|
|
func PolygonFromCell(cell Cell) *Polygon {
|
|
return PolygonFromLoops([]*Loop{LoopFromCell(cell)})
|
|
}
|
|
|
|
// initNested takes the set of loops in this polygon and performs the nesting
|
|
// computations to set the proper nesting and parent/child relationships.
|
|
func (p *Polygon) initNested() {
|
|
if len(p.loops) == 1 {
|
|
p.initOneLoop()
|
|
return
|
|
}
|
|
|
|
lm := make(loopMap)
|
|
|
|
for _, l := range p.loops {
|
|
lm.insertLoop(l, nil)
|
|
}
|
|
// The loops have all been added to the loopMap for ordering. Clear the
|
|
// loops slice because we add all the loops in-order in initLoops.
|
|
p.loops = nil
|
|
|
|
// Reorder the loops in depth-first traversal order.
|
|
p.initLoops(lm)
|
|
p.initLoopProperties()
|
|
}
|
|
|
|
// loopMap is a map of a loop to its immediate children with respect to nesting.
|
|
// It is used to determine which loops are shells and which are holes.
|
|
type loopMap map[*Loop][]*Loop
|
|
|
|
// insertLoop adds the given loop to the loop map under the specified parent.
|
|
// All children of the new entry are checked to see if the need to move up to
|
|
// a different level.
|
|
func (lm loopMap) insertLoop(newLoop, parent *Loop) {
|
|
var children []*Loop
|
|
for done := false; !done; {
|
|
children = lm[parent]
|
|
done = true
|
|
for _, child := range children {
|
|
if child.ContainsNested(newLoop) {
|
|
parent = child
|
|
done = false
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now, we have found a parent for this loop, it may be that some of the
|
|
// children of the parent of this loop may now be children of the new loop.
|
|
newChildren := lm[newLoop]
|
|
for i := 0; i < len(children); {
|
|
child := children[i]
|
|
if newLoop.ContainsNested(child) {
|
|
newChildren = append(newChildren, child)
|
|
children = append(children[0:i], children[i+1:]...)
|
|
} else {
|
|
i++
|
|
}
|
|
}
|
|
|
|
lm[newLoop] = newChildren
|
|
lm[parent] = append(children, newLoop)
|
|
}
|
|
|
|
// loopStack simplifies access to the loops while being initialized.
|
|
type loopStack []*Loop
|
|
|
|
func (s *loopStack) push(v *Loop) {
|
|
*s = append(*s, v)
|
|
}
|
|
func (s *loopStack) pop() *Loop {
|
|
l := len(*s)
|
|
r := (*s)[l-1]
|
|
*s = (*s)[:l-1]
|
|
return r
|
|
}
|
|
|
|
// initLoops walks the mapping of loops to all of their children, and adds them in
|
|
// order into to the polygons set of loops.
|
|
func (p *Polygon) initLoops(lm loopMap) {
|
|
var stack loopStack
|
|
stack.push(nil)
|
|
depth := -1
|
|
|
|
for len(stack) > 0 {
|
|
loop := stack.pop()
|
|
if loop != nil {
|
|
depth = loop.depth
|
|
p.loops = append(p.loops, loop)
|
|
}
|
|
children := lm[loop]
|
|
for i := len(children) - 1; i >= 0; i-- {
|
|
child := children[i]
|
|
child.depth = depth + 1
|
|
stack.push(child)
|
|
}
|
|
}
|
|
}
|
|
|
|
// initOneLoop set the properties for a polygon made of a single loop.
|
|
// TODO(roberts): Can this be merged with initLoopProperties
|
|
func (p *Polygon) initOneLoop() {
|
|
p.hasHoles = false
|
|
p.numVertices = len(p.loops[0].vertices)
|
|
p.bound = p.loops[0].RectBound()
|
|
p.subregionBound = ExpandForSubregions(p.bound)
|
|
// Ensure the loops depth is set correctly.
|
|
p.loops[0].depth = 0
|
|
|
|
p.initEdgesAndIndex()
|
|
}
|
|
|
|
// initLoopProperties sets the properties for polygons with multiple loops.
|
|
func (p *Polygon) initLoopProperties() {
|
|
p.numVertices = 0
|
|
// the loops depths are set by initNested/initOriented prior to this.
|
|
p.bound = EmptyRect()
|
|
p.hasHoles = false
|
|
for _, l := range p.loops {
|
|
if l.IsHole() {
|
|
p.hasHoles = true
|
|
} else {
|
|
p.bound = p.bound.Union(l.RectBound())
|
|
}
|
|
p.numVertices += l.NumVertices()
|
|
}
|
|
p.subregionBound = ExpandForSubregions(p.bound)
|
|
|
|
p.initEdgesAndIndex()
|
|
}
|
|
|
|
// initEdgesAndIndex performs the shape related initializations and adds the final
|
|
// polygon to the index.
|
|
func (p *Polygon) initEdgesAndIndex() {
|
|
p.numEdges = 0
|
|
p.cumulativeEdges = nil
|
|
if p.IsFull() {
|
|
return
|
|
}
|
|
const maxLinearSearchLoops = 12 // Based on benchmarks.
|
|
if len(p.loops) > maxLinearSearchLoops {
|
|
p.cumulativeEdges = make([]int, 0, len(p.loops))
|
|
}
|
|
|
|
for _, l := range p.loops {
|
|
if p.cumulativeEdges != nil {
|
|
p.cumulativeEdges = append(p.cumulativeEdges, p.numEdges)
|
|
}
|
|
p.numEdges += len(l.vertices)
|
|
}
|
|
|
|
p.index = NewShapeIndex()
|
|
p.index.Add(p)
|
|
}
|
|
|
|
// FullPolygon returns a special "full" polygon.
|
|
func FullPolygon() *Polygon {
|
|
ret := &Polygon{
|
|
loops: []*Loop{
|
|
FullLoop(),
|
|
},
|
|
numVertices: len(FullLoop().Vertices()),
|
|
bound: FullRect(),
|
|
subregionBound: FullRect(),
|
|
}
|
|
ret.initEdgesAndIndex()
|
|
return ret
|
|
}
|
|
|
|
// Validate checks whether this is a valid polygon,
|
|
// including checking whether all the loops are themselves valid.
|
|
func (p *Polygon) Validate() error {
|
|
for i, l := range p.loops {
|
|
// Check for loop errors that don't require building a ShapeIndex.
|
|
if err := l.findValidationErrorNoIndex(); err != nil {
|
|
return fmt.Errorf("loop %d: %v", i, err)
|
|
}
|
|
// Check that no loop is empty, and that the full loop only appears in the
|
|
// full polygon.
|
|
if l.IsEmpty() {
|
|
return fmt.Errorf("loop %d: empty loops are not allowed", i)
|
|
}
|
|
if l.IsFull() && len(p.loops) > 1 {
|
|
return fmt.Errorf("loop %d: full loop appears in non-full polygon", i)
|
|
}
|
|
}
|
|
|
|
// TODO(roberts): Uncomment the remaining checks when they are completed.
|
|
|
|
// Check for loop self-intersections and loop pairs that cross
|
|
// (including duplicate edges and vertices).
|
|
// if findSelfIntersection(p.index) {
|
|
// return fmt.Errorf("polygon has loop pairs that cross")
|
|
// }
|
|
|
|
// Check whether initOriented detected inconsistent loop orientations.
|
|
// if p.hasInconsistentLoopOrientations {
|
|
// return fmt.Errorf("inconsistent loop orientations detected")
|
|
// }
|
|
|
|
// Finally, verify the loop nesting hierarchy.
|
|
return p.findLoopNestingError()
|
|
}
|
|
|
|
// findLoopNestingError reports if there is an error in the loop nesting hierarchy.
|
|
func (p *Polygon) findLoopNestingError() error {
|
|
// First check that the loop depths make sense.
|
|
lastDepth := -1
|
|
for i, l := range p.loops {
|
|
depth := l.depth
|
|
if depth < 0 || depth > lastDepth+1 {
|
|
return fmt.Errorf("loop %d: invalid loop depth (%d)", i, depth)
|
|
}
|
|
lastDepth = depth
|
|
}
|
|
// Then check that they correspond to the actual loop nesting. This test
|
|
// is quadratic in the number of loops but the cost per iteration is small.
|
|
for i, l := range p.loops {
|
|
last := p.LastDescendant(i)
|
|
for j, l2 := range p.loops {
|
|
if i == j {
|
|
continue
|
|
}
|
|
nested := (j >= i+1) && (j <= last)
|
|
const reverseB = false
|
|
|
|
if l.containsNonCrossingBoundary(l2, reverseB) != nested {
|
|
nestedStr := ""
|
|
if !nested {
|
|
nestedStr = "not "
|
|
}
|
|
return fmt.Errorf("invalid nesting: loop %d should %scontain loop %d", i, nestedStr, j)
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// IsEmpty reports whether this is the special "empty" polygon (consisting of no loops).
|
|
func (p *Polygon) IsEmpty() bool {
|
|
return len(p.loops) == 0
|
|
}
|
|
|
|
// IsFull reports whether this is the special "full" polygon (consisting of a
|
|
// single loop that encompasses the entire sphere).
|
|
func (p *Polygon) IsFull() bool {
|
|
return len(p.loops) == 1 && p.loops[0].IsFull()
|
|
}
|
|
|
|
// NumLoops returns the number of loops in this polygon.
|
|
func (p *Polygon) NumLoops() int {
|
|
return len(p.loops)
|
|
}
|
|
|
|
// Loops returns the loops in this polygon.
|
|
func (p *Polygon) Loops() []*Loop {
|
|
return p.loops
|
|
}
|
|
|
|
// Loop returns the loop at the given index. Note that during initialization,
|
|
// the given loops are reordered according to a pre-order traversal of the loop
|
|
// nesting hierarchy. This implies that every loop is immediately followed by
|
|
// its descendants. This hierarchy can be traversed using the methods Parent,
|
|
// LastDescendant, and Loop.depth.
|
|
func (p *Polygon) Loop(k int) *Loop {
|
|
return p.loops[k]
|
|
}
|
|
|
|
// Parent returns the index of the parent of loop k.
|
|
// If the loop does not have a parent, ok=false is returned.
|
|
func (p *Polygon) Parent(k int) (index int, ok bool) {
|
|
// See where we are on the depth hierarchy.
|
|
depth := p.loops[k].depth
|
|
if depth == 0 {
|
|
return -1, false
|
|
}
|
|
|
|
// There may be several loops at the same nesting level as us that share a
|
|
// parent loop with us. (Imagine a slice of swiss cheese, of which we are one loop.
|
|
// we don't know how many may be next to us before we get back to our parent loop.)
|
|
// Move up one position from us, and then begin traversing back through the set of loops
|
|
// until we find the one that is our parent or we get to the top of the polygon.
|
|
for k--; k >= 0 && p.loops[k].depth <= depth; k-- {
|
|
}
|
|
return k, true
|
|
}
|
|
|
|
// LastDescendant returns the index of the last loop that is contained within loop k.
|
|
// If k is negative, it returns the last loop in the polygon.
|
|
// Note that loops are indexed according to a pre-order traversal of the nesting
|
|
// hierarchy, so the immediate children of loop k can be found by iterating over
|
|
// the loops (k+1)..LastDescendant(k) and selecting those whose depth is equal
|
|
// to Loop(k).depth+1.
|
|
func (p *Polygon) LastDescendant(k int) int {
|
|
if k < 0 {
|
|
return len(p.loops) - 1
|
|
}
|
|
|
|
depth := p.loops[k].depth
|
|
|
|
// Find the next loop immediately past us in the set of loops, and then start
|
|
// moving down the list until we either get to the end or find the next loop
|
|
// that is higher up the hierarchy than we are.
|
|
for k++; k < len(p.loops) && p.loops[k].depth > depth; k++ {
|
|
}
|
|
return k - 1
|
|
}
|
|
|
|
// CapBound returns a bounding spherical cap.
|
|
func (p *Polygon) CapBound() Cap { return p.bound.CapBound() }
|
|
|
|
// RectBound returns a bounding latitude-longitude rectangle.
|
|
func (p *Polygon) RectBound() Rect { return p.bound }
|
|
|
|
// ContainsPoint reports whether the polygon contains the point.
|
|
func (p *Polygon) ContainsPoint(point Point) bool {
|
|
// NOTE: A bounds check slows down this function by about 50%. It is
|
|
// worthwhile only when it might allow us to delay building the index.
|
|
if !p.index.IsFresh() && !p.bound.ContainsPoint(point) {
|
|
return false
|
|
}
|
|
|
|
// For small polygons, and during initial construction, it is faster to just
|
|
// check all the crossing.
|
|
const maxBruteForceVertices = 32
|
|
if p.numVertices < maxBruteForceVertices || p.index == nil {
|
|
inside := false
|
|
for _, l := range p.loops {
|
|
// use loops bruteforce to avoid building the index on each loop.
|
|
inside = inside != l.bruteForceContainsPoint(point)
|
|
}
|
|
return inside
|
|
}
|
|
|
|
// Otherwise we look up the ShapeIndex cell containing this point.
|
|
return NewContainsPointQuery(p.index, VertexModelSemiOpen).Contains(point)
|
|
}
|
|
|
|
// ContainsCell reports whether the polygon contains the given cell.
|
|
func (p *Polygon) ContainsCell(cell Cell) bool {
|
|
it := p.index.Iterator()
|
|
relation := it.LocateCellID(cell.ID())
|
|
|
|
// If "cell" is disjoint from all index cells, it is not contained.
|
|
// Similarly, if "cell" is subdivided into one or more index cells then it
|
|
// is not contained, since index cells are subdivided only if they (nearly)
|
|
// intersect a sufficient number of edges. (But note that if "cell" itself
|
|
// is an index cell then it may be contained, since it could be a cell with
|
|
// no edges in the loop interior.)
|
|
if relation != Indexed {
|
|
return false
|
|
}
|
|
|
|
// Otherwise check if any edges intersect "cell".
|
|
if p.boundaryApproxIntersects(it, cell) {
|
|
return false
|
|
}
|
|
|
|
// Otherwise check if the loop contains the center of "cell".
|
|
return p.iteratorContainsPoint(it, cell.Center())
|
|
}
|
|
|
|
// IntersectsCell reports whether the polygon intersects the given cell.
|
|
func (p *Polygon) IntersectsCell(cell Cell) bool {
|
|
it := p.index.Iterator()
|
|
relation := it.LocateCellID(cell.ID())
|
|
|
|
// If cell does not overlap any index cell, there is no intersection.
|
|
if relation == Disjoint {
|
|
return false
|
|
}
|
|
// If cell is subdivided into one or more index cells, there is an
|
|
// intersection to within the S2ShapeIndex error bound (see Contains).
|
|
if relation == Subdivided {
|
|
return true
|
|
}
|
|
// If cell is an index cell, there is an intersection because index cells
|
|
// are created only if they have at least one edge or they are entirely
|
|
// contained by the loop.
|
|
if it.CellID() == cell.id {
|
|
return true
|
|
}
|
|
// Otherwise check if any edges intersect cell.
|
|
if p.boundaryApproxIntersects(it, cell) {
|
|
return true
|
|
}
|
|
// Otherwise check if the loop contains the center of cell.
|
|
return p.iteratorContainsPoint(it, cell.Center())
|
|
}
|
|
|
|
// CellUnionBound computes a covering of the Polygon.
|
|
func (p *Polygon) CellUnionBound() []CellID {
|
|
// TODO(roberts): Use ShapeIndexRegion when it's available.
|
|
return p.CapBound().CellUnionBound()
|
|
}
|
|
|
|
// boundaryApproxIntersects reports whether the loop's boundary intersects cell.
|
|
// It may also return true when the loop boundary does not intersect cell but
|
|
// some edge comes within the worst-case error tolerance.
|
|
//
|
|
// This requires that it.Locate(cell) returned Indexed.
|
|
func (p *Polygon) boundaryApproxIntersects(it *ShapeIndexIterator, cell Cell) bool {
|
|
aClipped := it.IndexCell().findByShapeID(0)
|
|
|
|
// If there are no edges, there is no intersection.
|
|
if len(aClipped.edges) == 0 {
|
|
return false
|
|
}
|
|
|
|
// We can save some work if cell is the index cell itself.
|
|
if it.CellID() == cell.ID() {
|
|
return true
|
|
}
|
|
|
|
// Otherwise check whether any of the edges intersect cell.
|
|
maxError := (faceClipErrorUVCoord + intersectsRectErrorUVDist)
|
|
bound := cell.BoundUV().ExpandedByMargin(maxError)
|
|
for _, e := range aClipped.edges {
|
|
edge := p.index.Shape(0).Edge(e)
|
|
v0, v1, ok := ClipToPaddedFace(edge.V0, edge.V1, cell.Face(), maxError)
|
|
if ok && edgeIntersectsRect(v0, v1, bound) {
|
|
return true
|
|
}
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
// iteratorContainsPoint reports whether the iterator that is positioned at the
|
|
// ShapeIndexCell that may contain p, contains the point p.
|
|
func (p *Polygon) iteratorContainsPoint(it *ShapeIndexIterator, point Point) bool {
|
|
// Test containment by drawing a line segment from the cell center to the
|
|
// given point and counting edge crossings.
|
|
aClipped := it.IndexCell().findByShapeID(0)
|
|
inside := aClipped.containsCenter
|
|
|
|
if len(aClipped.edges) == 0 {
|
|
return inside
|
|
}
|
|
|
|
// This block requires ShapeIndex.
|
|
crosser := NewEdgeCrosser(it.Center(), point)
|
|
shape := p.index.Shape(0)
|
|
for _, e := range aClipped.edges {
|
|
edge := shape.Edge(e)
|
|
inside = inside != crosser.EdgeOrVertexCrossing(edge.V0, edge.V1)
|
|
}
|
|
|
|
return inside
|
|
}
|
|
|
|
// Shape Interface
|
|
|
|
// NumEdges returns the number of edges in this shape.
|
|
func (p *Polygon) NumEdges() int {
|
|
return p.numEdges
|
|
}
|
|
|
|
// Edge returns endpoints for the given edge index.
|
|
func (p *Polygon) Edge(e int) Edge {
|
|
var i int
|
|
|
|
if len(p.cumulativeEdges) > 0 {
|
|
for i = range p.cumulativeEdges {
|
|
if i+1 >= len(p.cumulativeEdges) || e < p.cumulativeEdges[i+1] {
|
|
e -= p.cumulativeEdges[i]
|
|
break
|
|
}
|
|
}
|
|
} else {
|
|
// When the number of loops is small, use linear search. Most often
|
|
// there is exactly one loop and the code below executes zero times.
|
|
for i = 0; e >= len(p.Loop(i).vertices); i++ {
|
|
e -= len(p.Loop(i).vertices)
|
|
}
|
|
}
|
|
|
|
return Edge{p.Loop(i).OrientedVertex(e), p.Loop(i).OrientedVertex(e + 1)}
|
|
}
|
|
|
|
// ReferencePoint returns the reference point for this polygon.
|
|
func (p *Polygon) ReferencePoint() ReferencePoint {
|
|
containsOrigin := false
|
|
for _, l := range p.loops {
|
|
containsOrigin = containsOrigin != l.ContainsOrigin()
|
|
}
|
|
return OriginReferencePoint(containsOrigin)
|
|
}
|
|
|
|
// NumChains reports the number of contiguous edge chains in the Polygon.
|
|
func (p *Polygon) NumChains() int {
|
|
return p.NumLoops()
|
|
}
|
|
|
|
// Chain returns the i-th edge Chain (loop) in the Shape.
|
|
func (p *Polygon) Chain(chainID int) Chain {
|
|
if p.cumulativeEdges != nil {
|
|
return Chain{p.cumulativeEdges[chainID], len(p.Loop(chainID).vertices)}
|
|
}
|
|
e := 0
|
|
for j := 0; j < chainID; j++ {
|
|
e += len(p.Loop(j).vertices)
|
|
}
|
|
|
|
// Polygon represents a full loop as a loop with one vertex, while
|
|
// Shape represents a full loop as a chain with no vertices.
|
|
if numVertices := p.Loop(chainID).NumVertices(); numVertices != 1 {
|
|
return Chain{e, numVertices}
|
|
}
|
|
return Chain{e, 0}
|
|
}
|
|
|
|
// ChainEdge returns the j-th edge of the i-th edge Chain (loop).
|
|
func (p *Polygon) ChainEdge(i, j int) Edge {
|
|
return Edge{p.Loop(i).OrientedVertex(j), p.Loop(i).OrientedVertex(j + 1)}
|
|
}
|
|
|
|
// ChainPosition returns a pair (i, j) such that edgeID is the j-th edge
|
|
// of the i-th edge Chain.
|
|
func (p *Polygon) ChainPosition(edgeID int) ChainPosition {
|
|
var i int
|
|
|
|
if len(p.cumulativeEdges) > 0 {
|
|
for i = range p.cumulativeEdges {
|
|
if i+1 >= len(p.cumulativeEdges) || edgeID < p.cumulativeEdges[i+1] {
|
|
edgeID -= p.cumulativeEdges[i]
|
|
break
|
|
}
|
|
}
|
|
} else {
|
|
// When the number of loops is small, use linear search. Most often
|
|
// there is exactly one loop and the code below executes zero times.
|
|
for i = 0; edgeID >= len(p.Loop(i).vertices); i++ {
|
|
edgeID -= len(p.Loop(i).vertices)
|
|
}
|
|
}
|
|
// TODO(roberts): unify this and Edge since they are mostly identical.
|
|
return ChainPosition{i, edgeID}
|
|
}
|
|
|
|
// Dimension returns the dimension of the geometry represented by this Polygon.
|
|
func (p *Polygon) Dimension() int { return 2 }
|
|
|
|
func (p *Polygon) typeTag() typeTag { return typeTagPolygon }
|
|
|
|
func (p *Polygon) privateInterface() {}
|
|
|
|
// Contains reports whether this polygon contains the other polygon.
|
|
// Specifically, it reports whether all the points in the other polygon
|
|
// are also in this polygon.
|
|
func (p *Polygon) Contains(o *Polygon) bool {
|
|
// If both polygons have one loop, use the more efficient Loop method.
|
|
// Note that Loop's Contains does its own bounding rectangle check.
|
|
if len(p.loops) == 1 && len(o.loops) == 1 {
|
|
return p.loops[0].Contains(o.loops[0])
|
|
}
|
|
|
|
// Otherwise if neither polygon has holes, we can still use the more
|
|
// efficient Loop's Contains method (rather than compareBoundary),
|
|
// but it's worthwhile to do our own bounds check first.
|
|
if !p.subregionBound.Contains(o.bound) {
|
|
// Even though Bound(A) does not contain Bound(B), it is still possible
|
|
// that A contains B. This can only happen when union of the two bounds
|
|
// spans all longitudes. For example, suppose that B consists of two
|
|
// shells with a longitude gap between them, while A consists of one shell
|
|
// that surrounds both shells of B but goes the other way around the
|
|
// sphere (so that it does not intersect the longitude gap).
|
|
if !p.bound.Lng.Union(o.bound.Lng).IsFull() {
|
|
return false
|
|
}
|
|
}
|
|
|
|
if !p.hasHoles && !o.hasHoles {
|
|
for _, l := range o.loops {
|
|
if !p.anyLoopContains(l) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Polygon A contains B iff B does not intersect the complement of A. From
|
|
// the intersection algorithm below, this means that the complement of A
|
|
// must exclude the entire boundary of B, and B must exclude all shell
|
|
// boundaries of the complement of A. (It can be shown that B must then
|
|
// exclude the entire boundary of the complement of A.) The first call
|
|
// below returns false if the boundaries cross, therefore the second call
|
|
// does not need to check for any crossing edges (which makes it cheaper).
|
|
return p.containsBoundary(o) && o.excludesNonCrossingComplementShells(p)
|
|
}
|
|
|
|
// Intersects reports whether this polygon intersects the other polygon, i.e.
|
|
// if there is a point that is contained by both polygons.
|
|
func (p *Polygon) Intersects(o *Polygon) bool {
|
|
// If both polygons have one loop, use the more efficient Loop method.
|
|
// Note that Loop Intersects does its own bounding rectangle check.
|
|
if len(p.loops) == 1 && len(o.loops) == 1 {
|
|
return p.loops[0].Intersects(o.loops[0])
|
|
}
|
|
|
|
// Otherwise if neither polygon has holes, we can still use the more
|
|
// efficient Loop.Intersects method. The polygons intersect if and
|
|
// only if some pair of loop regions intersect.
|
|
if !p.bound.Intersects(o.bound) {
|
|
return false
|
|
}
|
|
|
|
if !p.hasHoles && !o.hasHoles {
|
|
for _, l := range o.loops {
|
|
if p.anyLoopIntersects(l) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Polygon A is disjoint from B if A excludes the entire boundary of B and B
|
|
// excludes all shell boundaries of A. (It can be shown that B must then
|
|
// exclude the entire boundary of A.) The first call below returns false if
|
|
// the boundaries cross, therefore the second call does not need to check
|
|
// for crossing edges.
|
|
return !p.excludesBoundary(o) || !o.excludesNonCrossingShells(p)
|
|
}
|
|
|
|
// compareBoundary returns +1 if this polygon contains the boundary of B, -1 if A
|
|
// excludes the boundary of B, and 0 if the boundaries of A and B cross.
|
|
func (p *Polygon) compareBoundary(o *Loop) int {
|
|
result := -1
|
|
for i := 0; i < len(p.loops) && result != 0; i++ {
|
|
// If B crosses any loop of A, the result is 0. Otherwise the result
|
|
// changes sign each time B is contained by a loop of A.
|
|
result *= -p.loops[i].compareBoundary(o)
|
|
}
|
|
return result
|
|
}
|
|
|
|
// containsBoundary reports whether this polygon contains the entire boundary of B.
|
|
func (p *Polygon) containsBoundary(o *Polygon) bool {
|
|
for _, l := range o.loops {
|
|
if p.compareBoundary(l) <= 0 {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// excludesBoundary reports whether this polygon excludes the entire boundary of B.
|
|
func (p *Polygon) excludesBoundary(o *Polygon) bool {
|
|
for _, l := range o.loops {
|
|
if p.compareBoundary(l) >= 0 {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// containsNonCrossingBoundary reports whether polygon A contains the boundary of
|
|
// loop B. Shared edges are handled according to the rule described in loops
|
|
// containsNonCrossingBoundary.
|
|
func (p *Polygon) containsNonCrossingBoundary(o *Loop, reverse bool) bool {
|
|
var inside bool
|
|
for _, l := range p.loops {
|
|
x := l.containsNonCrossingBoundary(o, reverse)
|
|
inside = (inside != x)
|
|
}
|
|
return inside
|
|
}
|
|
|
|
// excludesNonCrossingShells reports wheterh given two polygons A and B such that the
|
|
// boundary of A does not cross any loop of B, if A excludes all shell boundaries of B.
|
|
func (p *Polygon) excludesNonCrossingShells(o *Polygon) bool {
|
|
for _, l := range o.loops {
|
|
if l.IsHole() {
|
|
continue
|
|
}
|
|
if p.containsNonCrossingBoundary(l, false) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// excludesNonCrossingComplementShells reports whether given two polygons A and B
|
|
// such that the boundary of A does not cross any loop of B, if A excludes all
|
|
// shell boundaries of the complement of B.
|
|
func (p *Polygon) excludesNonCrossingComplementShells(o *Polygon) bool {
|
|
// Special case to handle the complement of the empty or full polygons.
|
|
if o.IsEmpty() {
|
|
return !p.IsFull()
|
|
}
|
|
if o.IsFull() {
|
|
return true
|
|
}
|
|
|
|
// Otherwise the complement of B may be obtained by inverting loop(0) and
|
|
// then swapping the shell/hole status of all other loops. This implies
|
|
// that the shells of the complement consist of loop 0 plus all the holes of
|
|
// the original polygon.
|
|
for j, l := range o.loops {
|
|
if j > 0 && !l.IsHole() {
|
|
continue
|
|
}
|
|
|
|
// The interior of the complement is to the right of loop 0, and to the
|
|
// left of the loops that were originally holes.
|
|
if p.containsNonCrossingBoundary(l, j == 0) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// anyLoopContains reports whether any loop in this polygon contains the given loop.
|
|
func (p *Polygon) anyLoopContains(o *Loop) bool {
|
|
for _, l := range p.loops {
|
|
if l.Contains(o) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// anyLoopIntersects reports whether any loop in this polygon intersects the given loop.
|
|
func (p *Polygon) anyLoopIntersects(o *Loop) bool {
|
|
for _, l := range p.loops {
|
|
if l.Intersects(o) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Area returns the area of the polygon interior, i.e. the region on the left side
|
|
// of an odd number of loops. The return value is between 0 and 4*Pi.
|
|
func (p *Polygon) Area() float64 {
|
|
var area float64
|
|
for _, loop := range p.loops {
|
|
area += float64(loop.Sign()) * loop.Area()
|
|
}
|
|
return area
|
|
}
|
|
|
|
// Encode encodes the Polygon
|
|
func (p *Polygon) Encode(w io.Writer) error {
|
|
e := &encoder{w: w}
|
|
p.encode(e)
|
|
return e.err
|
|
}
|
|
|
|
// encode only supports lossless encoding and not compressed format.
|
|
func (p *Polygon) encode(e *encoder) {
|
|
if p.numVertices == 0 {
|
|
p.encodeCompressed(e, maxLevel, nil)
|
|
return
|
|
}
|
|
|
|
// Convert all the polygon vertices to XYZFaceSiTi format.
|
|
vs := make([]xyzFaceSiTi, 0, p.numVertices)
|
|
for _, l := range p.loops {
|
|
vs = append(vs, l.xyzFaceSiTiVertices()...)
|
|
}
|
|
|
|
// Computes a histogram of the cell levels at which the vertices are snapped.
|
|
// (histogram[0] is the number of unsnapped vertices, histogram[i] the number
|
|
// of vertices snapped at level i-1).
|
|
histogram := make([]int, maxLevel+2)
|
|
for _, v := range vs {
|
|
histogram[v.level+1]++
|
|
}
|
|
|
|
// Compute the level at which most of the vertices are snapped.
|
|
// If multiple levels have the same maximum number of vertices
|
|
// snapped to it, the first one (lowest level number / largest
|
|
// area / smallest encoding length) will be chosen, so this
|
|
// is desired.
|
|
var snapLevel, numSnapped int
|
|
for level, h := range histogram[1:] {
|
|
if h > numSnapped {
|
|
snapLevel, numSnapped = level, h
|
|
}
|
|
}
|
|
|
|
// Choose an encoding format based on the number of unsnapped vertices and a
|
|
// rough estimate of the encoded sizes.
|
|
numUnsnapped := p.numVertices - numSnapped // Number of vertices that won't be snapped at snapLevel.
|
|
const pointSize = 3 * 8 // s2.Point is an r3.Vector, which is 3 float64s. That's 3*8 = 24 bytes.
|
|
compressedSize := 4*p.numVertices + (pointSize+2)*numUnsnapped
|
|
losslessSize := pointSize * p.numVertices
|
|
if compressedSize < losslessSize {
|
|
p.encodeCompressed(e, snapLevel, vs)
|
|
} else {
|
|
p.encodeLossless(e)
|
|
}
|
|
}
|
|
|
|
// encodeLossless encodes the polygon's Points as float64s.
|
|
func (p *Polygon) encodeLossless(e *encoder) {
|
|
e.writeInt8(encodingVersion)
|
|
e.writeBool(true) // a legacy c++ value. must be true.
|
|
e.writeBool(p.hasHoles)
|
|
e.writeUint32(uint32(len(p.loops)))
|
|
|
|
if e.err != nil {
|
|
return
|
|
}
|
|
if len(p.loops) > maxEncodedLoops {
|
|
e.err = fmt.Errorf("too many loops (%d; max is %d)", len(p.loops), maxEncodedLoops)
|
|
return
|
|
}
|
|
for _, l := range p.loops {
|
|
l.encode(e)
|
|
}
|
|
|
|
// Encode the bound.
|
|
p.bound.encode(e)
|
|
}
|
|
|
|
func (p *Polygon) encodeCompressed(e *encoder, snapLevel int, vertices []xyzFaceSiTi) {
|
|
e.writeUint8(uint8(encodingCompressedVersion))
|
|
e.writeUint8(uint8(snapLevel))
|
|
e.writeUvarint(uint64(len(p.loops)))
|
|
|
|
if e.err != nil {
|
|
return
|
|
}
|
|
if l := len(p.loops); l > maxEncodedLoops {
|
|
e.err = fmt.Errorf("too many loops to encode: %d; max is %d", l, maxEncodedLoops)
|
|
return
|
|
}
|
|
|
|
for _, l := range p.loops {
|
|
l.encodeCompressed(e, snapLevel, vertices[:len(l.vertices)])
|
|
vertices = vertices[len(l.vertices):]
|
|
}
|
|
// Do not write the bound, num_vertices, or has_holes_ as they can be
|
|
// cheaply recomputed by decodeCompressed. Microbenchmarks show the
|
|
// speed difference is inconsequential.
|
|
}
|
|
|
|
// Decode decodes the Polygon.
|
|
func (p *Polygon) Decode(r io.Reader) error {
|
|
d := &decoder{r: asByteReader(r)}
|
|
version := int8(d.readUint8())
|
|
var dec func(*decoder)
|
|
switch version {
|
|
case encodingVersion:
|
|
dec = p.decode
|
|
case encodingCompressedVersion:
|
|
dec = p.decodeCompressed
|
|
default:
|
|
return fmt.Errorf("unsupported version %d", version)
|
|
}
|
|
dec(d)
|
|
return d.err
|
|
}
|
|
|
|
// maxEncodedLoops is the biggest supported number of loops in a polygon during encoding.
|
|
// Setting a maximum guards an allocation: it prevents an attacker from easily pushing us OOM.
|
|
const maxEncodedLoops = 10000000
|
|
|
|
func (p *Polygon) decode(d *decoder) {
|
|
*p = Polygon{}
|
|
d.readUint8() // Ignore irrelevant serialized owns_loops_ value.
|
|
|
|
p.hasHoles = d.readBool()
|
|
|
|
// Polygons with no loops are explicitly allowed here: a newly created
|
|
// polygon has zero loops and such polygons encode and decode properly.
|
|
nloops := d.readUint32()
|
|
if d.err != nil {
|
|
return
|
|
}
|
|
if nloops > maxEncodedLoops {
|
|
d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops)
|
|
return
|
|
}
|
|
p.loops = make([]*Loop, nloops)
|
|
for i := range p.loops {
|
|
p.loops[i] = new(Loop)
|
|
p.loops[i].decode(d)
|
|
p.numVertices += len(p.loops[i].vertices)
|
|
}
|
|
|
|
p.bound.decode(d)
|
|
if d.err != nil {
|
|
return
|
|
}
|
|
p.subregionBound = ExpandForSubregions(p.bound)
|
|
p.initEdgesAndIndex()
|
|
}
|
|
|
|
func (p *Polygon) decodeCompressed(d *decoder) {
|
|
snapLevel := int(d.readUint8())
|
|
|
|
if snapLevel > maxLevel {
|
|
d.err = fmt.Errorf("snaplevel too big: %d", snapLevel)
|
|
return
|
|
}
|
|
// Polygons with no loops are explicitly allowed here: a newly created
|
|
// polygon has zero loops and such polygons encode and decode properly.
|
|
nloops := int(d.readUvarint())
|
|
if nloops > maxEncodedLoops {
|
|
d.err = fmt.Errorf("too many loops (%d; max is %d)", nloops, maxEncodedLoops)
|
|
}
|
|
p.loops = make([]*Loop, nloops)
|
|
for i := range p.loops {
|
|
p.loops[i] = new(Loop)
|
|
p.loops[i].decodeCompressed(d, snapLevel)
|
|
}
|
|
p.initLoopProperties()
|
|
}
|
|
|
|
// TODO(roberts): Differences from C++
|
|
// Centroid
|
|
// SnapLevel
|
|
// DistanceToPoint
|
|
// DistanceToBoundary
|
|
// Project
|
|
// ProjectToBoundary
|
|
// ApproxContains/ApproxDisjoint for Polygons
|
|
// InitTo{Intersection/ApproxIntersection/Union/ApproxUnion/Diff/ApproxDiff}
|
|
// InitToSimplified
|
|
// InitToSnapped
|
|
// IntersectWithPolyline
|
|
// ApproxIntersectWithPolyline
|
|
// SubtractFromPolyline
|
|
// ApproxSubtractFromPolyline
|
|
// DestructiveUnion
|
|
// DestructiveApproxUnion
|
|
// InitToCellUnionBorder
|
|
// IsNormalized
|
|
// Equal/BoundaryEqual/BoundaryApproxEqual/BoundaryNear Polygons
|
|
// BreakEdgesAndAddToBuilder
|
|
//
|
|
// clearLoops
|
|
// findLoopNestingError
|
|
// initToSimplifiedInternal
|
|
// internalClipPolyline
|
|
// clipBoundary
|