mirror of
https://codeberg.org/superseriousbusiness/gotosocial.git
synced 2024-12-21 16:34:26 +03:00
699 lines
24 KiB
Go
699 lines
24 KiB
Go
|
// Copyright 2014 Google Inc. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package s2
|
||
|
|
||
|
import (
|
||
|
"io"
|
||
|
"math"
|
||
|
|
||
|
"github.com/golang/geo/r1"
|
||
|
"github.com/golang/geo/r2"
|
||
|
"github.com/golang/geo/r3"
|
||
|
"github.com/golang/geo/s1"
|
||
|
)
|
||
|
|
||
|
// Cell is an S2 region object that represents a cell. Unlike CellIDs,
|
||
|
// it supports efficient containment and intersection tests. However, it is
|
||
|
// also a more expensive representation.
|
||
|
type Cell struct {
|
||
|
face int8
|
||
|
level int8
|
||
|
orientation int8
|
||
|
id CellID
|
||
|
uv r2.Rect
|
||
|
}
|
||
|
|
||
|
// CellFromCellID constructs a Cell corresponding to the given CellID.
|
||
|
func CellFromCellID(id CellID) Cell {
|
||
|
c := Cell{}
|
||
|
c.id = id
|
||
|
f, i, j, o := c.id.faceIJOrientation()
|
||
|
c.face = int8(f)
|
||
|
c.level = int8(c.id.Level())
|
||
|
c.orientation = int8(o)
|
||
|
c.uv = ijLevelToBoundUV(i, j, int(c.level))
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
// CellFromPoint constructs a cell for the given Point.
|
||
|
func CellFromPoint(p Point) Cell {
|
||
|
return CellFromCellID(cellIDFromPoint(p))
|
||
|
}
|
||
|
|
||
|
// CellFromLatLng constructs a cell for the given LatLng.
|
||
|
func CellFromLatLng(ll LatLng) Cell {
|
||
|
return CellFromCellID(CellIDFromLatLng(ll))
|
||
|
}
|
||
|
|
||
|
// Face returns the face this cell is on.
|
||
|
func (c Cell) Face() int {
|
||
|
return int(c.face)
|
||
|
}
|
||
|
|
||
|
// oppositeFace returns the face opposite the given face.
|
||
|
func oppositeFace(face int) int {
|
||
|
return (face + 3) % 6
|
||
|
}
|
||
|
|
||
|
// Level returns the level of this cell.
|
||
|
func (c Cell) Level() int {
|
||
|
return int(c.level)
|
||
|
}
|
||
|
|
||
|
// ID returns the CellID this cell represents.
|
||
|
func (c Cell) ID() CellID {
|
||
|
return c.id
|
||
|
}
|
||
|
|
||
|
// IsLeaf returns whether this Cell is a leaf or not.
|
||
|
func (c Cell) IsLeaf() bool {
|
||
|
return c.level == maxLevel
|
||
|
}
|
||
|
|
||
|
// SizeIJ returns the edge length of this cell in (i,j)-space.
|
||
|
func (c Cell) SizeIJ() int {
|
||
|
return sizeIJ(int(c.level))
|
||
|
}
|
||
|
|
||
|
// SizeST returns the edge length of this cell in (s,t)-space.
|
||
|
func (c Cell) SizeST() float64 {
|
||
|
return c.id.sizeST(int(c.level))
|
||
|
}
|
||
|
|
||
|
// Vertex returns the k-th vertex of the cell (k = 0,1,2,3) in CCW order
|
||
|
// (lower left, lower right, upper right, upper left in the UV plane).
|
||
|
func (c Cell) Vertex(k int) Point {
|
||
|
return Point{faceUVToXYZ(int(c.face), c.uv.Vertices()[k].X, c.uv.Vertices()[k].Y).Normalize()}
|
||
|
}
|
||
|
|
||
|
// Edge returns the inward-facing normal of the great circle passing through
|
||
|
// the CCW ordered edge from vertex k to vertex k+1 (mod 4) (for k = 0,1,2,3).
|
||
|
func (c Cell) Edge(k int) Point {
|
||
|
switch k {
|
||
|
case 0:
|
||
|
return Point{vNorm(int(c.face), c.uv.Y.Lo).Normalize()} // Bottom
|
||
|
case 1:
|
||
|
return Point{uNorm(int(c.face), c.uv.X.Hi).Normalize()} // Right
|
||
|
case 2:
|
||
|
return Point{vNorm(int(c.face), c.uv.Y.Hi).Mul(-1.0).Normalize()} // Top
|
||
|
default:
|
||
|
return Point{uNorm(int(c.face), c.uv.X.Lo).Mul(-1.0).Normalize()} // Left
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// BoundUV returns the bounds of this cell in (u,v)-space.
|
||
|
func (c Cell) BoundUV() r2.Rect {
|
||
|
return c.uv
|
||
|
}
|
||
|
|
||
|
// Center returns the direction vector corresponding to the center in
|
||
|
// (s,t)-space of the given cell. This is the point at which the cell is
|
||
|
// divided into four subcells; it is not necessarily the centroid of the
|
||
|
// cell in (u,v)-space or (x,y,z)-space
|
||
|
func (c Cell) Center() Point {
|
||
|
return Point{c.id.rawPoint().Normalize()}
|
||
|
}
|
||
|
|
||
|
// Children returns the four direct children of this cell in traversal order
|
||
|
// and returns true. If this is a leaf cell, or the children could not be created,
|
||
|
// false is returned.
|
||
|
// The C++ method is called Subdivide.
|
||
|
func (c Cell) Children() ([4]Cell, bool) {
|
||
|
var children [4]Cell
|
||
|
|
||
|
if c.id.IsLeaf() {
|
||
|
return children, false
|
||
|
}
|
||
|
|
||
|
// Compute the cell midpoint in uv-space.
|
||
|
uvMid := c.id.centerUV()
|
||
|
|
||
|
// Create four children with the appropriate bounds.
|
||
|
cid := c.id.ChildBegin()
|
||
|
for pos := 0; pos < 4; pos++ {
|
||
|
children[pos] = Cell{
|
||
|
face: c.face,
|
||
|
level: c.level + 1,
|
||
|
orientation: c.orientation ^ int8(posToOrientation[pos]),
|
||
|
id: cid,
|
||
|
}
|
||
|
|
||
|
// We want to split the cell in half in u and v. To decide which
|
||
|
// side to set equal to the midpoint value, we look at cell's (i,j)
|
||
|
// position within its parent. The index for i is in bit 1 of ij.
|
||
|
ij := posToIJ[c.orientation][pos]
|
||
|
i := ij >> 1
|
||
|
j := ij & 1
|
||
|
if i == 1 {
|
||
|
children[pos].uv.X.Hi = c.uv.X.Hi
|
||
|
children[pos].uv.X.Lo = uvMid.X
|
||
|
} else {
|
||
|
children[pos].uv.X.Lo = c.uv.X.Lo
|
||
|
children[pos].uv.X.Hi = uvMid.X
|
||
|
}
|
||
|
if j == 1 {
|
||
|
children[pos].uv.Y.Hi = c.uv.Y.Hi
|
||
|
children[pos].uv.Y.Lo = uvMid.Y
|
||
|
} else {
|
||
|
children[pos].uv.Y.Lo = c.uv.Y.Lo
|
||
|
children[pos].uv.Y.Hi = uvMid.Y
|
||
|
}
|
||
|
cid = cid.Next()
|
||
|
}
|
||
|
return children, true
|
||
|
}
|
||
|
|
||
|
// ExactArea returns the area of this cell as accurately as possible.
|
||
|
func (c Cell) ExactArea() float64 {
|
||
|
v0, v1, v2, v3 := c.Vertex(0), c.Vertex(1), c.Vertex(2), c.Vertex(3)
|
||
|
return PointArea(v0, v1, v2) + PointArea(v0, v2, v3)
|
||
|
}
|
||
|
|
||
|
// ApproxArea returns the approximate area of this cell. This method is accurate
|
||
|
// to within 3% percent for all cell sizes and accurate to within 0.1% for cells
|
||
|
// at level 5 or higher (i.e. squares 350km to a side or smaller on the Earth's
|
||
|
// surface). It is moderately cheap to compute.
|
||
|
func (c Cell) ApproxArea() float64 {
|
||
|
// All cells at the first two levels have the same area.
|
||
|
if c.level < 2 {
|
||
|
return c.AverageArea()
|
||
|
}
|
||
|
|
||
|
// First, compute the approximate area of the cell when projected
|
||
|
// perpendicular to its normal. The cross product of its diagonals gives
|
||
|
// the normal, and the length of the normal is twice the projected area.
|
||
|
flatArea := 0.5 * (c.Vertex(2).Sub(c.Vertex(0).Vector).
|
||
|
Cross(c.Vertex(3).Sub(c.Vertex(1).Vector)).Norm())
|
||
|
|
||
|
// Now, compensate for the curvature of the cell surface by pretending
|
||
|
// that the cell is shaped like a spherical cap. The ratio of the
|
||
|
// area of a spherical cap to the area of its projected disc turns out
|
||
|
// to be 2 / (1 + sqrt(1 - r*r)) where r is the radius of the disc.
|
||
|
// For example, when r=0 the ratio is 1, and when r=1 the ratio is 2.
|
||
|
// Here we set Pi*r*r == flatArea to find the equivalent disc.
|
||
|
return flatArea * 2 / (1 + math.Sqrt(1-math.Min(1/math.Pi*flatArea, 1)))
|
||
|
}
|
||
|
|
||
|
// AverageArea returns the average area of cells at the level of this cell.
|
||
|
// This is accurate to within a factor of 1.7.
|
||
|
func (c Cell) AverageArea() float64 {
|
||
|
return AvgAreaMetric.Value(int(c.level))
|
||
|
}
|
||
|
|
||
|
// IntersectsCell reports whether the intersection of this cell and the other cell is not nil.
|
||
|
func (c Cell) IntersectsCell(oc Cell) bool {
|
||
|
return c.id.Intersects(oc.id)
|
||
|
}
|
||
|
|
||
|
// ContainsCell reports whether this cell contains the other cell.
|
||
|
func (c Cell) ContainsCell(oc Cell) bool {
|
||
|
return c.id.Contains(oc.id)
|
||
|
}
|
||
|
|
||
|
// CellUnionBound computes a covering of the Cell.
|
||
|
func (c Cell) CellUnionBound() []CellID {
|
||
|
return c.CapBound().CellUnionBound()
|
||
|
}
|
||
|
|
||
|
// latitude returns the latitude of the cell vertex in radians given by (i,j),
|
||
|
// where i and j indicate the Hi (1) or Lo (0) corner.
|
||
|
func (c Cell) latitude(i, j int) float64 {
|
||
|
var u, v float64
|
||
|
switch {
|
||
|
case i == 0 && j == 0:
|
||
|
u = c.uv.X.Lo
|
||
|
v = c.uv.Y.Lo
|
||
|
case i == 0 && j == 1:
|
||
|
u = c.uv.X.Lo
|
||
|
v = c.uv.Y.Hi
|
||
|
case i == 1 && j == 0:
|
||
|
u = c.uv.X.Hi
|
||
|
v = c.uv.Y.Lo
|
||
|
case i == 1 && j == 1:
|
||
|
u = c.uv.X.Hi
|
||
|
v = c.uv.Y.Hi
|
||
|
default:
|
||
|
panic("i and/or j is out of bounds")
|
||
|
}
|
||
|
return latitude(Point{faceUVToXYZ(int(c.face), u, v)}).Radians()
|
||
|
}
|
||
|
|
||
|
// longitude returns the longitude of the cell vertex in radians given by (i,j),
|
||
|
// where i and j indicate the Hi (1) or Lo (0) corner.
|
||
|
func (c Cell) longitude(i, j int) float64 {
|
||
|
var u, v float64
|
||
|
switch {
|
||
|
case i == 0 && j == 0:
|
||
|
u = c.uv.X.Lo
|
||
|
v = c.uv.Y.Lo
|
||
|
case i == 0 && j == 1:
|
||
|
u = c.uv.X.Lo
|
||
|
v = c.uv.Y.Hi
|
||
|
case i == 1 && j == 0:
|
||
|
u = c.uv.X.Hi
|
||
|
v = c.uv.Y.Lo
|
||
|
case i == 1 && j == 1:
|
||
|
u = c.uv.X.Hi
|
||
|
v = c.uv.Y.Hi
|
||
|
default:
|
||
|
panic("i and/or j is out of bounds")
|
||
|
}
|
||
|
return longitude(Point{faceUVToXYZ(int(c.face), u, v)}).Radians()
|
||
|
}
|
||
|
|
||
|
var (
|
||
|
poleMinLat = math.Asin(math.Sqrt(1.0/3)) - 0.5*dblEpsilon
|
||
|
)
|
||
|
|
||
|
// RectBound returns the bounding rectangle of this cell.
|
||
|
func (c Cell) RectBound() Rect {
|
||
|
if c.level > 0 {
|
||
|
// Except for cells at level 0, the latitude and longitude extremes are
|
||
|
// attained at the vertices. Furthermore, the latitude range is
|
||
|
// determined by one pair of diagonally opposite vertices and the
|
||
|
// longitude range is determined by the other pair.
|
||
|
//
|
||
|
// We first determine which corner (i,j) of the cell has the largest
|
||
|
// absolute latitude. To maximize latitude, we want to find the point in
|
||
|
// the cell that has the largest absolute z-coordinate and the smallest
|
||
|
// absolute x- and y-coordinates. To do this we look at each coordinate
|
||
|
// (u and v), and determine whether we want to minimize or maximize that
|
||
|
// coordinate based on the axis direction and the cell's (u,v) quadrant.
|
||
|
u := c.uv.X.Lo + c.uv.X.Hi
|
||
|
v := c.uv.Y.Lo + c.uv.Y.Hi
|
||
|
var i, j int
|
||
|
if uAxis(int(c.face)).Z == 0 {
|
||
|
if u < 0 {
|
||
|
i = 1
|
||
|
}
|
||
|
} else if u > 0 {
|
||
|
i = 1
|
||
|
}
|
||
|
if vAxis(int(c.face)).Z == 0 {
|
||
|
if v < 0 {
|
||
|
j = 1
|
||
|
}
|
||
|
} else if v > 0 {
|
||
|
j = 1
|
||
|
}
|
||
|
lat := r1.IntervalFromPoint(c.latitude(i, j)).AddPoint(c.latitude(1-i, 1-j))
|
||
|
lng := s1.EmptyInterval().AddPoint(c.longitude(i, 1-j)).AddPoint(c.longitude(1-i, j))
|
||
|
|
||
|
// We grow the bounds slightly to make sure that the bounding rectangle
|
||
|
// contains LatLngFromPoint(P) for any point P inside the loop L defined by the
|
||
|
// four *normalized* vertices. Note that normalization of a vector can
|
||
|
// change its direction by up to 0.5 * dblEpsilon radians, and it is not
|
||
|
// enough just to add Normalize calls to the code above because the
|
||
|
// latitude/longitude ranges are not necessarily determined by diagonally
|
||
|
// opposite vertex pairs after normalization.
|
||
|
//
|
||
|
// We would like to bound the amount by which the latitude/longitude of a
|
||
|
// contained point P can exceed the bounds computed above. In the case of
|
||
|
// longitude, the normalization error can change the direction of rounding
|
||
|
// leading to a maximum difference in longitude of 2 * dblEpsilon. In
|
||
|
// the case of latitude, the normalization error can shift the latitude by
|
||
|
// up to 0.5 * dblEpsilon and the other sources of error can cause the
|
||
|
// two latitudes to differ by up to another 1.5 * dblEpsilon, which also
|
||
|
// leads to a maximum difference of 2 * dblEpsilon.
|
||
|
return Rect{lat, lng}.expanded(LatLng{s1.Angle(2 * dblEpsilon), s1.Angle(2 * dblEpsilon)}).PolarClosure()
|
||
|
}
|
||
|
|
||
|
// The 4 cells around the equator extend to +/-45 degrees latitude at the
|
||
|
// midpoints of their top and bottom edges. The two cells covering the
|
||
|
// poles extend down to +/-35.26 degrees at their vertices. The maximum
|
||
|
// error in this calculation is 0.5 * dblEpsilon.
|
||
|
var bound Rect
|
||
|
switch c.face {
|
||
|
case 0:
|
||
|
bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-math.Pi / 4, math.Pi / 4}}
|
||
|
case 1:
|
||
|
bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{math.Pi / 4, 3 * math.Pi / 4}}
|
||
|
case 2:
|
||
|
bound = Rect{r1.Interval{poleMinLat, math.Pi / 2}, s1.FullInterval()}
|
||
|
case 3:
|
||
|
bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{3 * math.Pi / 4, -3 * math.Pi / 4}}
|
||
|
case 4:
|
||
|
bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-3 * math.Pi / 4, -math.Pi / 4}}
|
||
|
default:
|
||
|
bound = Rect{r1.Interval{-math.Pi / 2, -poleMinLat}, s1.FullInterval()}
|
||
|
}
|
||
|
|
||
|
// Finally, we expand the bound to account for the error when a point P is
|
||
|
// converted to an LatLng to test for containment. (The bound should be
|
||
|
// large enough so that it contains the computed LatLng of any contained
|
||
|
// point, not just the infinite-precision version.) We don't need to expand
|
||
|
// longitude because longitude is calculated via a single call to math.Atan2,
|
||
|
// which is guaranteed to be semi-monotonic.
|
||
|
return bound.expanded(LatLng{s1.Angle(dblEpsilon), s1.Angle(0)})
|
||
|
}
|
||
|
|
||
|
// CapBound returns the bounding cap of this cell.
|
||
|
func (c Cell) CapBound() Cap {
|
||
|
// We use the cell center in (u,v)-space as the cap axis. This vector is very close
|
||
|
// to GetCenter() and faster to compute. Neither one of these vectors yields the
|
||
|
// bounding cap with minimal surface area, but they are both pretty close.
|
||
|
cap := CapFromPoint(Point{faceUVToXYZ(int(c.face), c.uv.Center().X, c.uv.Center().Y).Normalize()})
|
||
|
for k := 0; k < 4; k++ {
|
||
|
cap = cap.AddPoint(c.Vertex(k))
|
||
|
}
|
||
|
return cap
|
||
|
}
|
||
|
|
||
|
// ContainsPoint reports whether this cell contains the given point. Note that
|
||
|
// unlike Loop/Polygon, a Cell is considered to be a closed set. This means
|
||
|
// that a point on a Cell's edge or vertex belong to the Cell and the relevant
|
||
|
// adjacent Cells too.
|
||
|
//
|
||
|
// If you want every point to be contained by exactly one Cell,
|
||
|
// you will need to convert the Cell to a Loop.
|
||
|
func (c Cell) ContainsPoint(p Point) bool {
|
||
|
var uv r2.Point
|
||
|
var ok bool
|
||
|
if uv.X, uv.Y, ok = faceXYZToUV(int(c.face), p); !ok {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// Expand the (u,v) bound to ensure that
|
||
|
//
|
||
|
// CellFromPoint(p).ContainsPoint(p)
|
||
|
//
|
||
|
// is always true. To do this, we need to account for the error when
|
||
|
// converting from (u,v) coordinates to (s,t) coordinates. In the
|
||
|
// normal case the total error is at most dblEpsilon.
|
||
|
return c.uv.ExpandedByMargin(dblEpsilon).ContainsPoint(uv)
|
||
|
}
|
||
|
|
||
|
// Encode encodes the Cell.
|
||
|
func (c Cell) Encode(w io.Writer) error {
|
||
|
e := &encoder{w: w}
|
||
|
c.encode(e)
|
||
|
return e.err
|
||
|
}
|
||
|
|
||
|
func (c Cell) encode(e *encoder) {
|
||
|
c.id.encode(e)
|
||
|
}
|
||
|
|
||
|
// Decode decodes the Cell.
|
||
|
func (c *Cell) Decode(r io.Reader) error {
|
||
|
d := &decoder{r: asByteReader(r)}
|
||
|
c.decode(d)
|
||
|
return d.err
|
||
|
}
|
||
|
|
||
|
func (c *Cell) decode(d *decoder) {
|
||
|
c.id.decode(d)
|
||
|
*c = CellFromCellID(c.id)
|
||
|
}
|
||
|
|
||
|
// vertexChordDist2 returns the squared chord distance from point P to the
|
||
|
// given corner vertex specified by the Hi or Lo values of each.
|
||
|
func (c Cell) vertexChordDist2(p Point, xHi, yHi bool) s1.ChordAngle {
|
||
|
x := c.uv.X.Lo
|
||
|
y := c.uv.Y.Lo
|
||
|
if xHi {
|
||
|
x = c.uv.X.Hi
|
||
|
}
|
||
|
if yHi {
|
||
|
y = c.uv.Y.Hi
|
||
|
}
|
||
|
|
||
|
return ChordAngleBetweenPoints(p, PointFromCoords(x, y, 1))
|
||
|
}
|
||
|
|
||
|
// uEdgeIsClosest reports whether a point P is closer to the interior of the specified
|
||
|
// Cell edge (either the lower or upper edge of the Cell) or to the endpoints.
|
||
|
func (c Cell) uEdgeIsClosest(p Point, vHi bool) bool {
|
||
|
u0 := c.uv.X.Lo
|
||
|
u1 := c.uv.X.Hi
|
||
|
v := c.uv.Y.Lo
|
||
|
if vHi {
|
||
|
v = c.uv.Y.Hi
|
||
|
}
|
||
|
// These are the normals to the planes that are perpendicular to the edge
|
||
|
// and pass through one of its two endpoints.
|
||
|
dir0 := r3.Vector{v*v + 1, -u0 * v, -u0}
|
||
|
dir1 := r3.Vector{v*v + 1, -u1 * v, -u1}
|
||
|
return p.Dot(dir0) > 0 && p.Dot(dir1) < 0
|
||
|
}
|
||
|
|
||
|
// vEdgeIsClosest reports whether a point P is closer to the interior of the specified
|
||
|
// Cell edge (either the right or left edge of the Cell) or to the endpoints.
|
||
|
func (c Cell) vEdgeIsClosest(p Point, uHi bool) bool {
|
||
|
v0 := c.uv.Y.Lo
|
||
|
v1 := c.uv.Y.Hi
|
||
|
u := c.uv.X.Lo
|
||
|
if uHi {
|
||
|
u = c.uv.X.Hi
|
||
|
}
|
||
|
dir0 := r3.Vector{-u * v0, u*u + 1, -v0}
|
||
|
dir1 := r3.Vector{-u * v1, u*u + 1, -v1}
|
||
|
return p.Dot(dir0) > 0 && p.Dot(dir1) < 0
|
||
|
}
|
||
|
|
||
|
// edgeDistance reports the distance from a Point P to a given Cell edge. The point
|
||
|
// P is given by its dot product, and the uv edge by its normal in the
|
||
|
// given coordinate value.
|
||
|
func edgeDistance(ij, uv float64) s1.ChordAngle {
|
||
|
// Let P by the target point and let R be the closest point on the given
|
||
|
// edge AB. The desired distance PR can be expressed as PR^2 = PQ^2 + QR^2
|
||
|
// where Q is the point P projected onto the plane through the great circle
|
||
|
// through AB. We can compute the distance PQ^2 perpendicular to the plane
|
||
|
// from "dirIJ" (the dot product of the target point P with the edge
|
||
|
// normal) and the squared length the edge normal (1 + uv**2).
|
||
|
pq2 := (ij * ij) / (1 + uv*uv)
|
||
|
|
||
|
// We can compute the distance QR as (1 - OQ) where O is the sphere origin,
|
||
|
// and we can compute OQ^2 = 1 - PQ^2 using the Pythagorean theorem.
|
||
|
// (This calculation loses accuracy as angle POQ approaches Pi/2.)
|
||
|
qr := 1 - math.Sqrt(1-pq2)
|
||
|
return s1.ChordAngleFromSquaredLength(pq2 + qr*qr)
|
||
|
}
|
||
|
|
||
|
// distanceInternal reports the distance from the given point to the interior of
|
||
|
// the cell if toInterior is true or to the boundary of the cell otherwise.
|
||
|
func (c Cell) distanceInternal(targetXYZ Point, toInterior bool) s1.ChordAngle {
|
||
|
// All calculations are done in the (u,v,w) coordinates of this cell's face.
|
||
|
target := faceXYZtoUVW(int(c.face), targetXYZ)
|
||
|
|
||
|
// Compute dot products with all four upward or rightward-facing edge
|
||
|
// normals. dirIJ is the dot product for the edge corresponding to axis
|
||
|
// I, endpoint J. For example, dir01 is the right edge of the Cell
|
||
|
// (corresponding to the upper endpoint of the u-axis).
|
||
|
dir00 := target.X - target.Z*c.uv.X.Lo
|
||
|
dir01 := target.X - target.Z*c.uv.X.Hi
|
||
|
dir10 := target.Y - target.Z*c.uv.Y.Lo
|
||
|
dir11 := target.Y - target.Z*c.uv.Y.Hi
|
||
|
inside := true
|
||
|
if dir00 < 0 {
|
||
|
inside = false // Target is to the left of the cell
|
||
|
if c.vEdgeIsClosest(target, false) {
|
||
|
return edgeDistance(-dir00, c.uv.X.Lo)
|
||
|
}
|
||
|
}
|
||
|
if dir01 > 0 {
|
||
|
inside = false // Target is to the right of the cell
|
||
|
if c.vEdgeIsClosest(target, true) {
|
||
|
return edgeDistance(dir01, c.uv.X.Hi)
|
||
|
}
|
||
|
}
|
||
|
if dir10 < 0 {
|
||
|
inside = false // Target is below the cell
|
||
|
if c.uEdgeIsClosest(target, false) {
|
||
|
return edgeDistance(-dir10, c.uv.Y.Lo)
|
||
|
}
|
||
|
}
|
||
|
if dir11 > 0 {
|
||
|
inside = false // Target is above the cell
|
||
|
if c.uEdgeIsClosest(target, true) {
|
||
|
return edgeDistance(dir11, c.uv.Y.Hi)
|
||
|
}
|
||
|
}
|
||
|
if inside {
|
||
|
if toInterior {
|
||
|
return s1.ChordAngle(0)
|
||
|
}
|
||
|
// Although you might think of Cells as rectangles, they are actually
|
||
|
// arbitrary quadrilaterals after they are projected onto the sphere.
|
||
|
// Therefore the simplest approach is just to find the minimum distance to
|
||
|
// any of the four edges.
|
||
|
return minChordAngle(edgeDistance(-dir00, c.uv.X.Lo),
|
||
|
edgeDistance(dir01, c.uv.X.Hi),
|
||
|
edgeDistance(-dir10, c.uv.Y.Lo),
|
||
|
edgeDistance(dir11, c.uv.Y.Hi))
|
||
|
}
|
||
|
|
||
|
// Otherwise, the closest point is one of the four cell vertices. Note that
|
||
|
// it is *not* trivial to narrow down the candidates based on the edge sign
|
||
|
// tests above, because (1) the edges don't meet at right angles and (2)
|
||
|
// there are points on the far side of the sphere that are both above *and*
|
||
|
// below the cell, etc.
|
||
|
return minChordAngle(c.vertexChordDist2(target, false, false),
|
||
|
c.vertexChordDist2(target, true, false),
|
||
|
c.vertexChordDist2(target, false, true),
|
||
|
c.vertexChordDist2(target, true, true))
|
||
|
}
|
||
|
|
||
|
// Distance reports the distance from the cell to the given point. Returns zero if
|
||
|
// the point is inside the cell.
|
||
|
func (c Cell) Distance(target Point) s1.ChordAngle {
|
||
|
return c.distanceInternal(target, true)
|
||
|
}
|
||
|
|
||
|
// MaxDistance reports the maximum distance from the cell (including its interior) to the
|
||
|
// given point.
|
||
|
func (c Cell) MaxDistance(target Point) s1.ChordAngle {
|
||
|
// First check the 4 cell vertices. If all are within the hemisphere
|
||
|
// centered around target, the max distance will be to one of these vertices.
|
||
|
targetUVW := faceXYZtoUVW(int(c.face), target)
|
||
|
maxDist := maxChordAngle(c.vertexChordDist2(targetUVW, false, false),
|
||
|
c.vertexChordDist2(targetUVW, true, false),
|
||
|
c.vertexChordDist2(targetUVW, false, true),
|
||
|
c.vertexChordDist2(targetUVW, true, true))
|
||
|
|
||
|
if maxDist <= s1.RightChordAngle {
|
||
|
return maxDist
|
||
|
}
|
||
|
|
||
|
// Otherwise, find the minimum distance dMin to the antipodal point and the
|
||
|
// maximum distance will be pi - dMin.
|
||
|
return s1.StraightChordAngle - c.BoundaryDistance(Point{target.Mul(-1)})
|
||
|
}
|
||
|
|
||
|
// BoundaryDistance reports the distance from the cell boundary to the given point.
|
||
|
func (c Cell) BoundaryDistance(target Point) s1.ChordAngle {
|
||
|
return c.distanceInternal(target, false)
|
||
|
}
|
||
|
|
||
|
// DistanceToEdge returns the minimum distance from the cell to the given edge AB. Returns
|
||
|
// zero if the edge intersects the cell interior.
|
||
|
func (c Cell) DistanceToEdge(a, b Point) s1.ChordAngle {
|
||
|
// Possible optimizations:
|
||
|
// - Currently the (cell vertex, edge endpoint) distances are computed
|
||
|
// twice each, and the length of AB is computed 4 times.
|
||
|
// - To fix this, refactor GetDistance(target) so that it skips calculating
|
||
|
// the distance to each cell vertex. Instead, compute the cell vertices
|
||
|
// and distances in this function, and add a low-level UpdateMinDistance
|
||
|
// that allows the XA, XB, and AB distances to be passed in.
|
||
|
// - It might also be more efficient to do all calculations in UVW-space,
|
||
|
// since this would involve transforming 2 points rather than 4.
|
||
|
|
||
|
// First, check the minimum distance to the edge endpoints A and B.
|
||
|
// (This also detects whether either endpoint is inside the cell.)
|
||
|
minDist := minChordAngle(c.Distance(a), c.Distance(b))
|
||
|
if minDist == 0 {
|
||
|
return minDist
|
||
|
}
|
||
|
|
||
|
// Otherwise, check whether the edge crosses the cell boundary.
|
||
|
crosser := NewChainEdgeCrosser(a, b, c.Vertex(3))
|
||
|
for i := 0; i < 4; i++ {
|
||
|
if crosser.ChainCrossingSign(c.Vertex(i)) != DoNotCross {
|
||
|
return 0
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Finally, check whether the minimum distance occurs between a cell vertex
|
||
|
// and the interior of the edge AB. (Some of this work is redundant, since
|
||
|
// it also checks the distance to the endpoints A and B again.)
|
||
|
//
|
||
|
// Note that we don't need to check the distance from the interior of AB to
|
||
|
// the interior of a cell edge, because the only way that this distance can
|
||
|
// be minimal is if the two edges cross (already checked above).
|
||
|
for i := 0; i < 4; i++ {
|
||
|
minDist, _ = UpdateMinDistance(c.Vertex(i), a, b, minDist)
|
||
|
}
|
||
|
return minDist
|
||
|
}
|
||
|
|
||
|
// MaxDistanceToEdge returns the maximum distance from the cell (including its interior)
|
||
|
// to the given edge AB.
|
||
|
func (c Cell) MaxDistanceToEdge(a, b Point) s1.ChordAngle {
|
||
|
// If the maximum distance from both endpoints to the cell is less than π/2
|
||
|
// then the maximum distance from the edge to the cell is the maximum of the
|
||
|
// two endpoint distances.
|
||
|
maxDist := maxChordAngle(c.MaxDistance(a), c.MaxDistance(b))
|
||
|
if maxDist <= s1.RightChordAngle {
|
||
|
return maxDist
|
||
|
}
|
||
|
|
||
|
return s1.StraightChordAngle - c.DistanceToEdge(Point{a.Mul(-1)}, Point{b.Mul(-1)})
|
||
|
}
|
||
|
|
||
|
// DistanceToCell returns the minimum distance from this cell to the given cell.
|
||
|
// It returns zero if one cell contains the other.
|
||
|
func (c Cell) DistanceToCell(target Cell) s1.ChordAngle {
|
||
|
// If the cells intersect, the distance is zero. We use the (u,v) ranges
|
||
|
// rather than CellID intersects so that cells that share a partial edge or
|
||
|
// corner are considered to intersect.
|
||
|
if c.face == target.face && c.uv.Intersects(target.uv) {
|
||
|
return 0
|
||
|
}
|
||
|
|
||
|
// Otherwise, the minimum distance always occurs between a vertex of one
|
||
|
// cell and an edge of the other cell (including the edge endpoints). This
|
||
|
// represents a total of 32 possible (vertex, edge) pairs.
|
||
|
//
|
||
|
// TODO(roberts): This could be optimized to be at least 5x faster by pruning
|
||
|
// the set of possible closest vertex/edge pairs using the faces and (u,v)
|
||
|
// ranges of both cells.
|
||
|
var va, vb [4]Point
|
||
|
for i := 0; i < 4; i++ {
|
||
|
va[i] = c.Vertex(i)
|
||
|
vb[i] = target.Vertex(i)
|
||
|
}
|
||
|
minDist := s1.InfChordAngle()
|
||
|
for i := 0; i < 4; i++ {
|
||
|
for j := 0; j < 4; j++ {
|
||
|
minDist, _ = UpdateMinDistance(va[i], vb[j], vb[(j+1)&3], minDist)
|
||
|
minDist, _ = UpdateMinDistance(vb[i], va[j], va[(j+1)&3], minDist)
|
||
|
}
|
||
|
}
|
||
|
return minDist
|
||
|
}
|
||
|
|
||
|
// MaxDistanceToCell returns the maximum distance from the cell (including its
|
||
|
// interior) to the given target cell.
|
||
|
func (c Cell) MaxDistanceToCell(target Cell) s1.ChordAngle {
|
||
|
// Need to check the antipodal target for intersection with the cell. If it
|
||
|
// intersects, the distance is the straight ChordAngle.
|
||
|
// antipodalUV is the transpose of the original UV, interpreted within the opposite face.
|
||
|
antipodalUV := r2.Rect{target.uv.Y, target.uv.X}
|
||
|
if int(c.face) == oppositeFace(int(target.face)) && c.uv.Intersects(antipodalUV) {
|
||
|
return s1.StraightChordAngle
|
||
|
}
|
||
|
|
||
|
// Otherwise, the maximum distance always occurs between a vertex of one
|
||
|
// cell and an edge of the other cell (including the edge endpoints). This
|
||
|
// represents a total of 32 possible (vertex, edge) pairs.
|
||
|
//
|
||
|
// TODO(roberts): When the maximum distance is at most π/2, the maximum is
|
||
|
// always attained between a pair of vertices, and this could be made much
|
||
|
// faster by testing each vertex pair once rather than the current 4 times.
|
||
|
var va, vb [4]Point
|
||
|
for i := 0; i < 4; i++ {
|
||
|
va[i] = c.Vertex(i)
|
||
|
vb[i] = target.Vertex(i)
|
||
|
}
|
||
|
maxDist := s1.NegativeChordAngle
|
||
|
for i := 0; i < 4; i++ {
|
||
|
for j := 0; j < 4; j++ {
|
||
|
maxDist, _ = UpdateMaxDistance(va[i], vb[j], vb[(j+1)&3], maxDist)
|
||
|
maxDist, _ = UpdateMaxDistance(vb[i], va[j], va[(j+1)&3], maxDist)
|
||
|
}
|
||
|
}
|
||
|
return maxDist
|
||
|
}
|