mirror of
https://codeberg.org/superseriousbusiness/gotosocial.git
synced 2025-01-12 19:27:23 +03:00
428 lines
15 KiB
Go
428 lines
15 KiB
Go
|
// Copyright 2014 Google Inc. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package s2
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
|
||
|
"github.com/golang/geo/r3"
|
||
|
)
|
||
|
|
||
|
//
|
||
|
// This file contains documentation of the various coordinate systems used
|
||
|
// throughout the library. Most importantly, S2 defines a framework for
|
||
|
// decomposing the unit sphere into a hierarchy of "cells". Each cell is a
|
||
|
// quadrilateral bounded by four geodesics. The top level of the hierarchy is
|
||
|
// obtained by projecting the six faces of a cube onto the unit sphere, and
|
||
|
// lower levels are obtained by subdividing each cell into four children
|
||
|
// recursively. Cells are numbered such that sequentially increasing cells
|
||
|
// follow a continuous space-filling curve over the entire sphere. The
|
||
|
// transformation is designed to make the cells at each level fairly uniform
|
||
|
// in size.
|
||
|
//
|
||
|
////////////////////////// S2 Cell Decomposition /////////////////////////
|
||
|
//
|
||
|
// The following methods define the cube-to-sphere projection used by
|
||
|
// the Cell decomposition.
|
||
|
//
|
||
|
// In the process of converting a latitude-longitude pair to a 64-bit cell
|
||
|
// id, the following coordinate systems are used:
|
||
|
//
|
||
|
// (id)
|
||
|
// An CellID is a 64-bit encoding of a face and a Hilbert curve position
|
||
|
// on that face. The Hilbert curve position implicitly encodes both the
|
||
|
// position of a cell and its subdivision level (see s2cellid.go).
|
||
|
//
|
||
|
// (face, i, j)
|
||
|
// Leaf-cell coordinates. "i" and "j" are integers in the range
|
||
|
// [0,(2**30)-1] that identify a particular leaf cell on the given face.
|
||
|
// The (i, j) coordinate system is right-handed on each face, and the
|
||
|
// faces are oriented such that Hilbert curves connect continuously from
|
||
|
// one face to the next.
|
||
|
//
|
||
|
// (face, s, t)
|
||
|
// Cell-space coordinates. "s" and "t" are real numbers in the range
|
||
|
// [0,1] that identify a point on the given face. For example, the point
|
||
|
// (s, t) = (0.5, 0.5) corresponds to the center of the top-level face
|
||
|
// cell. This point is also a vertex of exactly four cells at each
|
||
|
// subdivision level greater than zero.
|
||
|
//
|
||
|
// (face, si, ti)
|
||
|
// Discrete cell-space coordinates. These are obtained by multiplying
|
||
|
// "s" and "t" by 2**31 and rounding to the nearest unsigned integer.
|
||
|
// Discrete coordinates lie in the range [0,2**31]. This coordinate
|
||
|
// system can represent the edge and center positions of all cells with
|
||
|
// no loss of precision (including non-leaf cells). In binary, each
|
||
|
// coordinate of a level-k cell center ends with a 1 followed by
|
||
|
// (30 - k) 0s. The coordinates of its edges end with (at least)
|
||
|
// (31 - k) 0s.
|
||
|
//
|
||
|
// (face, u, v)
|
||
|
// Cube-space coordinates in the range [-1,1]. To make the cells at each
|
||
|
// level more uniform in size after they are projected onto the sphere,
|
||
|
// we apply a nonlinear transformation of the form u=f(s), v=f(t).
|
||
|
// The (u, v) coordinates after this transformation give the actual
|
||
|
// coordinates on the cube face (modulo some 90 degree rotations) before
|
||
|
// it is projected onto the unit sphere.
|
||
|
//
|
||
|
// (face, u, v, w)
|
||
|
// Per-face coordinate frame. This is an extension of the (face, u, v)
|
||
|
// cube-space coordinates that adds a third axis "w" in the direction of
|
||
|
// the face normal. It is always a right-handed 3D coordinate system.
|
||
|
// Cube-space coordinates can be converted to this frame by setting w=1,
|
||
|
// while (u,v,w) coordinates can be projected onto the cube face by
|
||
|
// dividing by w, i.e. (face, u/w, v/w).
|
||
|
//
|
||
|
// (x, y, z)
|
||
|
// Direction vector (Point). Direction vectors are not necessarily unit
|
||
|
// length, and are often chosen to be points on the biunit cube
|
||
|
// [-1,+1]x[-1,+1]x[-1,+1]. They can be be normalized to obtain the
|
||
|
// corresponding point on the unit sphere.
|
||
|
//
|
||
|
// (lat, lng)
|
||
|
// Latitude and longitude (LatLng). Latitudes must be between -90 and
|
||
|
// 90 degrees inclusive, and longitudes must be between -180 and 180
|
||
|
// degrees inclusive.
|
||
|
//
|
||
|
// Note that the (i, j), (s, t), (si, ti), and (u, v) coordinate systems are
|
||
|
// right-handed on all six faces.
|
||
|
//
|
||
|
//
|
||
|
// There are a number of different projections from cell-space (s,t) to
|
||
|
// cube-space (u,v): linear, quadratic, and tangent. They have the following
|
||
|
// tradeoffs:
|
||
|
//
|
||
|
// Linear - This is the fastest transformation, but also produces the least
|
||
|
// uniform cell sizes. Cell areas vary by a factor of about 5.2, with the
|
||
|
// largest cells at the center of each face and the smallest cells in
|
||
|
// the corners.
|
||
|
//
|
||
|
// Tangent - Transforming the coordinates via Atan makes the cell sizes
|
||
|
// more uniform. The areas vary by a maximum ratio of 1.4 as opposed to a
|
||
|
// maximum ratio of 5.2. However, each call to Atan is about as expensive
|
||
|
// as all of the other calculations combined when converting from points to
|
||
|
// cell ids, i.e. it reduces performance by a factor of 3.
|
||
|
//
|
||
|
// Quadratic - This is an approximation of the tangent projection that
|
||
|
// is much faster and produces cells that are almost as uniform in size.
|
||
|
// It is about 3 times faster than the tangent projection for converting
|
||
|
// cell ids to points or vice versa. Cell areas vary by a maximum ratio of
|
||
|
// about 2.1.
|
||
|
//
|
||
|
// Here is a table comparing the cell uniformity using each projection. Area
|
||
|
// Ratio is the maximum ratio over all subdivision levels of the largest cell
|
||
|
// area to the smallest cell area at that level, Edge Ratio is the maximum
|
||
|
// ratio of the longest edge of any cell to the shortest edge of any cell at
|
||
|
// the same level, and Diag Ratio is the ratio of the longest diagonal of
|
||
|
// any cell to the shortest diagonal of any cell at the same level.
|
||
|
//
|
||
|
// Area Edge Diag
|
||
|
// Ratio Ratio Ratio
|
||
|
// -----------------------------------
|
||
|
// Linear: 5.200 2.117 2.959
|
||
|
// Tangent: 1.414 1.414 1.704
|
||
|
// Quadratic: 2.082 1.802 1.932
|
||
|
//
|
||
|
// The worst-case cell aspect ratios are about the same with all three
|
||
|
// projections. The maximum ratio of the longest edge to the shortest edge
|
||
|
// within the same cell is about 1.4 and the maximum ratio of the diagonals
|
||
|
// within the same cell is about 1.7.
|
||
|
//
|
||
|
// For Go we have chosen to use only the Quadratic approach. Other language
|
||
|
// implementations may offer other choices.
|
||
|
|
||
|
const (
|
||
|
// maxSiTi is the maximum value of an si- or ti-coordinate.
|
||
|
// It is one shift more than maxSize. The range of valid (si,ti)
|
||
|
// values is [0..maxSiTi].
|
||
|
maxSiTi = maxSize << 1
|
||
|
)
|
||
|
|
||
|
// siTiToST converts an si- or ti-value to the corresponding s- or t-value.
|
||
|
// Value is capped at 1.0 because there is no DCHECK in Go.
|
||
|
func siTiToST(si uint32) float64 {
|
||
|
if si > maxSiTi {
|
||
|
return 1.0
|
||
|
}
|
||
|
return float64(si) / float64(maxSiTi)
|
||
|
}
|
||
|
|
||
|
// stToSiTi converts the s- or t-value to the nearest si- or ti-coordinate.
|
||
|
// The result may be outside the range of valid (si,ti)-values. Value of
|
||
|
// 0.49999999999999994 (math.NextAfter(0.5, -1)), will be incorrectly rounded up.
|
||
|
func stToSiTi(s float64) uint32 {
|
||
|
if s < 0 {
|
||
|
return uint32(s*maxSiTi - 0.5)
|
||
|
}
|
||
|
return uint32(s*maxSiTi + 0.5)
|
||
|
}
|
||
|
|
||
|
// stToUV converts an s or t value to the corresponding u or v value.
|
||
|
// This is a non-linear transformation from [-1,1] to [-1,1] that
|
||
|
// attempts to make the cell sizes more uniform.
|
||
|
// This uses what the C++ version calls 'the quadratic transform'.
|
||
|
func stToUV(s float64) float64 {
|
||
|
if s >= 0.5 {
|
||
|
return (1 / 3.) * (4*s*s - 1)
|
||
|
}
|
||
|
return (1 / 3.) * (1 - 4*(1-s)*(1-s))
|
||
|
}
|
||
|
|
||
|
// uvToST is the inverse of the stToUV transformation. Note that it
|
||
|
// is not always true that uvToST(stToUV(x)) == x due to numerical
|
||
|
// errors.
|
||
|
func uvToST(u float64) float64 {
|
||
|
if u >= 0 {
|
||
|
return 0.5 * math.Sqrt(1+3*u)
|
||
|
}
|
||
|
return 1 - 0.5*math.Sqrt(1-3*u)
|
||
|
}
|
||
|
|
||
|
// face returns face ID from 0 to 5 containing the r. For points on the
|
||
|
// boundary between faces, the result is arbitrary but deterministic.
|
||
|
func face(r r3.Vector) int {
|
||
|
f := r.LargestComponent()
|
||
|
switch {
|
||
|
case f == r3.XAxis && r.X < 0:
|
||
|
f += 3
|
||
|
case f == r3.YAxis && r.Y < 0:
|
||
|
f += 3
|
||
|
case f == r3.ZAxis && r.Z < 0:
|
||
|
f += 3
|
||
|
}
|
||
|
return int(f)
|
||
|
}
|
||
|
|
||
|
// validFaceXYZToUV given a valid face for the given point r (meaning that
|
||
|
// dot product of r with the face normal is positive), returns
|
||
|
// the corresponding u and v values, which may lie outside the range [-1,1].
|
||
|
func validFaceXYZToUV(face int, r r3.Vector) (float64, float64) {
|
||
|
switch face {
|
||
|
case 0:
|
||
|
return r.Y / r.X, r.Z / r.X
|
||
|
case 1:
|
||
|
return -r.X / r.Y, r.Z / r.Y
|
||
|
case 2:
|
||
|
return -r.X / r.Z, -r.Y / r.Z
|
||
|
case 3:
|
||
|
return r.Z / r.X, r.Y / r.X
|
||
|
case 4:
|
||
|
return r.Z / r.Y, -r.X / r.Y
|
||
|
}
|
||
|
return -r.Y / r.Z, -r.X / r.Z
|
||
|
}
|
||
|
|
||
|
// xyzToFaceUV converts a direction vector (not necessarily unit length) to
|
||
|
// (face, u, v) coordinates.
|
||
|
func xyzToFaceUV(r r3.Vector) (f int, u, v float64) {
|
||
|
f = face(r)
|
||
|
u, v = validFaceXYZToUV(f, r)
|
||
|
return f, u, v
|
||
|
}
|
||
|
|
||
|
// faceUVToXYZ turns face and UV coordinates into an unnormalized 3 vector.
|
||
|
func faceUVToXYZ(face int, u, v float64) r3.Vector {
|
||
|
switch face {
|
||
|
case 0:
|
||
|
return r3.Vector{1, u, v}
|
||
|
case 1:
|
||
|
return r3.Vector{-u, 1, v}
|
||
|
case 2:
|
||
|
return r3.Vector{-u, -v, 1}
|
||
|
case 3:
|
||
|
return r3.Vector{-1, -v, -u}
|
||
|
case 4:
|
||
|
return r3.Vector{v, -1, -u}
|
||
|
default:
|
||
|
return r3.Vector{v, u, -1}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// faceXYZToUV returns the u and v values (which may lie outside the range
|
||
|
// [-1, 1]) if the dot product of the point p with the given face normal is positive.
|
||
|
func faceXYZToUV(face int, p Point) (u, v float64, ok bool) {
|
||
|
switch face {
|
||
|
case 0:
|
||
|
if p.X <= 0 {
|
||
|
return 0, 0, false
|
||
|
}
|
||
|
case 1:
|
||
|
if p.Y <= 0 {
|
||
|
return 0, 0, false
|
||
|
}
|
||
|
case 2:
|
||
|
if p.Z <= 0 {
|
||
|
return 0, 0, false
|
||
|
}
|
||
|
case 3:
|
||
|
if p.X >= 0 {
|
||
|
return 0, 0, false
|
||
|
}
|
||
|
case 4:
|
||
|
if p.Y >= 0 {
|
||
|
return 0, 0, false
|
||
|
}
|
||
|
default:
|
||
|
if p.Z >= 0 {
|
||
|
return 0, 0, false
|
||
|
}
|
||
|
}
|
||
|
|
||
|
u, v = validFaceXYZToUV(face, p.Vector)
|
||
|
return u, v, true
|
||
|
}
|
||
|
|
||
|
// faceXYZtoUVW transforms the given point P to the (u,v,w) coordinate frame of the given
|
||
|
// face where the w-axis represents the face normal.
|
||
|
func faceXYZtoUVW(face int, p Point) Point {
|
||
|
// The result coordinates are simply the dot products of P with the (u,v,w)
|
||
|
// axes for the given face (see faceUVWAxes).
|
||
|
switch face {
|
||
|
case 0:
|
||
|
return Point{r3.Vector{p.Y, p.Z, p.X}}
|
||
|
case 1:
|
||
|
return Point{r3.Vector{-p.X, p.Z, p.Y}}
|
||
|
case 2:
|
||
|
return Point{r3.Vector{-p.X, -p.Y, p.Z}}
|
||
|
case 3:
|
||
|
return Point{r3.Vector{-p.Z, -p.Y, -p.X}}
|
||
|
case 4:
|
||
|
return Point{r3.Vector{-p.Z, p.X, -p.Y}}
|
||
|
default:
|
||
|
return Point{r3.Vector{p.Y, p.X, -p.Z}}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// faceSiTiToXYZ transforms the (si, ti) coordinates to a (not necessarily
|
||
|
// unit length) Point on the given face.
|
||
|
func faceSiTiToXYZ(face int, si, ti uint32) Point {
|
||
|
return Point{faceUVToXYZ(face, stToUV(siTiToST(si)), stToUV(siTiToST(ti)))}
|
||
|
}
|
||
|
|
||
|
// xyzToFaceSiTi transforms the (not necessarily unit length) Point to
|
||
|
// (face, si, ti) coordinates and the level the Point is at.
|
||
|
func xyzToFaceSiTi(p Point) (face int, si, ti uint32, level int) {
|
||
|
face, u, v := xyzToFaceUV(p.Vector)
|
||
|
si = stToSiTi(uvToST(u))
|
||
|
ti = stToSiTi(uvToST(v))
|
||
|
|
||
|
// If the levels corresponding to si,ti are not equal, then p is not a cell
|
||
|
// center. The si,ti values of 0 and maxSiTi need to be handled specially
|
||
|
// because they do not correspond to cell centers at any valid level; they
|
||
|
// are mapped to level -1 by the code at the end.
|
||
|
level = maxLevel - findLSBSetNonZero64(uint64(si|maxSiTi))
|
||
|
if level < 0 || level != maxLevel-findLSBSetNonZero64(uint64(ti|maxSiTi)) {
|
||
|
return face, si, ti, -1
|
||
|
}
|
||
|
|
||
|
// In infinite precision, this test could be changed to ST == SiTi. However,
|
||
|
// due to rounding errors, uvToST(xyzToFaceUV(faceUVToXYZ(stToUV(...)))) is
|
||
|
// not idempotent. On the other hand, the center is computed exactly the same
|
||
|
// way p was originally computed (if it is indeed the center of a Cell);
|
||
|
// the comparison can be exact.
|
||
|
if p.Vector == faceSiTiToXYZ(face, si, ti).Normalize() {
|
||
|
return face, si, ti, level
|
||
|
}
|
||
|
|
||
|
return face, si, ti, -1
|
||
|
}
|
||
|
|
||
|
// uNorm returns the right-handed normal (not necessarily unit length) for an
|
||
|
// edge in the direction of the positive v-axis at the given u-value on
|
||
|
// the given face. (This vector is perpendicular to the plane through
|
||
|
// the sphere origin that contains the given edge.)
|
||
|
func uNorm(face int, u float64) r3.Vector {
|
||
|
switch face {
|
||
|
case 0:
|
||
|
return r3.Vector{u, -1, 0}
|
||
|
case 1:
|
||
|
return r3.Vector{1, u, 0}
|
||
|
case 2:
|
||
|
return r3.Vector{1, 0, u}
|
||
|
case 3:
|
||
|
return r3.Vector{-u, 0, 1}
|
||
|
case 4:
|
||
|
return r3.Vector{0, -u, 1}
|
||
|
default:
|
||
|
return r3.Vector{0, -1, -u}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// vNorm returns the right-handed normal (not necessarily unit length) for an
|
||
|
// edge in the direction of the positive u-axis at the given v-value on
|
||
|
// the given face.
|
||
|
func vNorm(face int, v float64) r3.Vector {
|
||
|
switch face {
|
||
|
case 0:
|
||
|
return r3.Vector{-v, 0, 1}
|
||
|
case 1:
|
||
|
return r3.Vector{0, -v, 1}
|
||
|
case 2:
|
||
|
return r3.Vector{0, -1, -v}
|
||
|
case 3:
|
||
|
return r3.Vector{v, -1, 0}
|
||
|
case 4:
|
||
|
return r3.Vector{1, v, 0}
|
||
|
default:
|
||
|
return r3.Vector{1, 0, v}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// faceUVWAxes are the U, V, and W axes for each face.
|
||
|
var faceUVWAxes = [6][3]Point{
|
||
|
{Point{r3.Vector{0, 1, 0}}, Point{r3.Vector{0, 0, 1}}, Point{r3.Vector{1, 0, 0}}},
|
||
|
{Point{r3.Vector{-1, 0, 0}}, Point{r3.Vector{0, 0, 1}}, Point{r3.Vector{0, 1, 0}}},
|
||
|
{Point{r3.Vector{-1, 0, 0}}, Point{r3.Vector{0, -1, 0}}, Point{r3.Vector{0, 0, 1}}},
|
||
|
{Point{r3.Vector{0, 0, -1}}, Point{r3.Vector{0, -1, 0}}, Point{r3.Vector{-1, 0, 0}}},
|
||
|
{Point{r3.Vector{0, 0, -1}}, Point{r3.Vector{1, 0, 0}}, Point{r3.Vector{0, -1, 0}}},
|
||
|
{Point{r3.Vector{0, 1, 0}}, Point{r3.Vector{1, 0, 0}}, Point{r3.Vector{0, 0, -1}}},
|
||
|
}
|
||
|
|
||
|
// faceUVWFaces are the precomputed neighbors of each face.
|
||
|
var faceUVWFaces = [6][3][2]int{
|
||
|
{{4, 1}, {5, 2}, {3, 0}},
|
||
|
{{0, 3}, {5, 2}, {4, 1}},
|
||
|
{{0, 3}, {1, 4}, {5, 2}},
|
||
|
{{2, 5}, {1, 4}, {0, 3}},
|
||
|
{{2, 5}, {3, 0}, {1, 4}},
|
||
|
{{4, 1}, {3, 0}, {2, 5}},
|
||
|
}
|
||
|
|
||
|
// uvwAxis returns the given axis of the given face.
|
||
|
func uvwAxis(face, axis int) Point {
|
||
|
return faceUVWAxes[face][axis]
|
||
|
}
|
||
|
|
||
|
// uvwFaces returns the face in the (u,v,w) coordinate system on the given axis
|
||
|
// in the given direction.
|
||
|
func uvwFace(face, axis, direction int) int {
|
||
|
return faceUVWFaces[face][axis][direction]
|
||
|
}
|
||
|
|
||
|
// uAxis returns the u-axis for the given face.
|
||
|
func uAxis(face int) Point {
|
||
|
return uvwAxis(face, 0)
|
||
|
}
|
||
|
|
||
|
// vAxis returns the v-axis for the given face.
|
||
|
func vAxis(face int) Point {
|
||
|
return uvwAxis(face, 1)
|
||
|
}
|
||
|
|
||
|
// Return the unit-length normal for the given face.
|
||
|
func unitNorm(face int) Point {
|
||
|
return uvwAxis(face, 2)
|
||
|
}
|