mirror of
https://codeberg.org/superseriousbusiness/gotosocial.git
synced 2024-12-27 03:18:16 +03:00
264 lines
9.5 KiB
Go
264 lines
9.5 KiB
Go
|
// Copyright 2017 Google Inc. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
package s2
|
||
|
|
||
|
import (
|
||
|
"sort"
|
||
|
)
|
||
|
|
||
|
// Edge represents a geodesic edge consisting of two vertices. Zero-length edges are
|
||
|
// allowed, and can be used to represent points.
|
||
|
type Edge struct {
|
||
|
V0, V1 Point
|
||
|
}
|
||
|
|
||
|
// Cmp compares the two edges using the underlying Points Cmp method and returns
|
||
|
//
|
||
|
// -1 if e < other
|
||
|
// 0 if e == other
|
||
|
// +1 if e > other
|
||
|
//
|
||
|
// The two edges are compared by first vertex, and then by the second vertex.
|
||
|
func (e Edge) Cmp(other Edge) int {
|
||
|
if v0cmp := e.V0.Cmp(other.V0.Vector); v0cmp != 0 {
|
||
|
return v0cmp
|
||
|
}
|
||
|
return e.V1.Cmp(other.V1.Vector)
|
||
|
}
|
||
|
|
||
|
// sortEdges sorts the slice of Edges in place.
|
||
|
func sortEdges(e []Edge) {
|
||
|
sort.Sort(edges(e))
|
||
|
}
|
||
|
|
||
|
// edges implements the Sort interface for slices of Edge.
|
||
|
type edges []Edge
|
||
|
|
||
|
func (e edges) Len() int { return len(e) }
|
||
|
func (e edges) Swap(i, j int) { e[i], e[j] = e[j], e[i] }
|
||
|
func (e edges) Less(i, j int) bool { return e[i].Cmp(e[j]) == -1 }
|
||
|
|
||
|
// ShapeEdgeID is a unique identifier for an Edge within an ShapeIndex,
|
||
|
// consisting of a (shapeID, edgeID) pair.
|
||
|
type ShapeEdgeID struct {
|
||
|
ShapeID int32
|
||
|
EdgeID int32
|
||
|
}
|
||
|
|
||
|
// Cmp compares the two ShapeEdgeIDs and returns
|
||
|
//
|
||
|
// -1 if s < other
|
||
|
// 0 if s == other
|
||
|
// +1 if s > other
|
||
|
//
|
||
|
// The two are compared first by shape id and then by edge id.
|
||
|
func (s ShapeEdgeID) Cmp(other ShapeEdgeID) int {
|
||
|
switch {
|
||
|
case s.ShapeID < other.ShapeID:
|
||
|
return -1
|
||
|
case s.ShapeID > other.ShapeID:
|
||
|
return 1
|
||
|
}
|
||
|
switch {
|
||
|
case s.EdgeID < other.EdgeID:
|
||
|
return -1
|
||
|
case s.EdgeID > other.EdgeID:
|
||
|
return 1
|
||
|
}
|
||
|
return 0
|
||
|
}
|
||
|
|
||
|
// ShapeEdge represents a ShapeEdgeID with the two endpoints of that Edge.
|
||
|
type ShapeEdge struct {
|
||
|
ID ShapeEdgeID
|
||
|
Edge Edge
|
||
|
}
|
||
|
|
||
|
// Chain represents a range of edge IDs corresponding to a chain of connected
|
||
|
// edges, specified as a (start, length) pair. The chain is defined to consist of
|
||
|
// edge IDs {start, start + 1, ..., start + length - 1}.
|
||
|
type Chain struct {
|
||
|
Start, Length int
|
||
|
}
|
||
|
|
||
|
// ChainPosition represents the position of an edge within a given edge chain,
|
||
|
// specified as a (chainID, offset) pair. Chains are numbered sequentially
|
||
|
// starting from zero, and offsets are measured from the start of each chain.
|
||
|
type ChainPosition struct {
|
||
|
ChainID, Offset int
|
||
|
}
|
||
|
|
||
|
// A ReferencePoint consists of a point and a boolean indicating whether the point
|
||
|
// is contained by a particular shape.
|
||
|
type ReferencePoint struct {
|
||
|
Point Point
|
||
|
Contained bool
|
||
|
}
|
||
|
|
||
|
// OriginReferencePoint returns a ReferencePoint with the given value for
|
||
|
// contained and the origin point. It should be used when all points or no
|
||
|
// points are contained.
|
||
|
func OriginReferencePoint(contained bool) ReferencePoint {
|
||
|
return ReferencePoint{Point: OriginPoint(), Contained: contained}
|
||
|
}
|
||
|
|
||
|
// typeTag is a 32-bit tag that can be used to identify the type of an encoded
|
||
|
// Shape. All encodable types have a non-zero type tag. The tag associated with
|
||
|
type typeTag uint32
|
||
|
|
||
|
const (
|
||
|
// Indicates that a given Shape type cannot be encoded.
|
||
|
typeTagNone typeTag = 0
|
||
|
typeTagPolygon typeTag = 1
|
||
|
typeTagPolyline typeTag = 2
|
||
|
typeTagPointVector typeTag = 3
|
||
|
typeTagLaxPolyline typeTag = 4
|
||
|
typeTagLaxPolygon typeTag = 5
|
||
|
|
||
|
// The minimum allowable tag for future user-defined Shape types.
|
||
|
typeTagMinUser typeTag = 8192
|
||
|
)
|
||
|
|
||
|
// Shape represents polygonal geometry in a flexible way. It is organized as a
|
||
|
// collection of edges that optionally defines an interior. All geometry
|
||
|
// represented by a given Shape must have the same dimension, which means that
|
||
|
// an Shape can represent either a set of points, a set of polylines, or a set
|
||
|
// of polygons.
|
||
|
//
|
||
|
// Shape is defined as an interface in order to give clients control over the
|
||
|
// underlying data representation. Sometimes an Shape does not have any data of
|
||
|
// its own, but instead wraps some other type.
|
||
|
//
|
||
|
// Shape operations are typically defined on a ShapeIndex rather than
|
||
|
// individual shapes. An ShapeIndex is simply a collection of Shapes,
|
||
|
// possibly of different dimensions (e.g. 10 points and 3 polygons), organized
|
||
|
// into a data structure for efficient edge access.
|
||
|
//
|
||
|
// The edges of a Shape are indexed by a contiguous range of edge IDs
|
||
|
// starting at 0. The edges are further subdivided into chains, where each
|
||
|
// chain consists of a sequence of edges connected end-to-end (a polyline).
|
||
|
// For example, a Shape representing two polylines AB and CDE would have
|
||
|
// three edges (AB, CD, DE) grouped into two chains: (AB) and (CD, DE).
|
||
|
// Similarly, an Shape representing 5 points would have 5 chains consisting
|
||
|
// of one edge each.
|
||
|
//
|
||
|
// Shape has methods that allow edges to be accessed either using the global
|
||
|
// numbering (edge ID) or within a particular chain. The global numbering is
|
||
|
// sufficient for most purposes, but the chain representation is useful for
|
||
|
// certain algorithms such as intersection (see BooleanOperation).
|
||
|
type Shape interface {
|
||
|
// NumEdges returns the number of edges in this shape.
|
||
|
NumEdges() int
|
||
|
|
||
|
// Edge returns the edge for the given edge index.
|
||
|
Edge(i int) Edge
|
||
|
|
||
|
// ReferencePoint returns an arbitrary reference point for the shape. (The
|
||
|
// containment boolean value must be false for shapes that do not have an interior.)
|
||
|
//
|
||
|
// This reference point may then be used to compute the containment of other
|
||
|
// points by counting edge crossings.
|
||
|
ReferencePoint() ReferencePoint
|
||
|
|
||
|
// NumChains reports the number of contiguous edge chains in the shape.
|
||
|
// For example, a shape whose edges are [AB, BC, CD, AE, EF] would consist
|
||
|
// of two chains (AB,BC,CD and AE,EF). Every chain is assigned a chain Id
|
||
|
// numbered sequentially starting from zero.
|
||
|
//
|
||
|
// Note that it is always acceptable to implement this method by returning
|
||
|
// NumEdges, i.e. every chain consists of a single edge, but this may
|
||
|
// reduce the efficiency of some algorithms.
|
||
|
NumChains() int
|
||
|
|
||
|
// Chain returns the range of edge IDs corresponding to the given edge chain.
|
||
|
// Edge chains must form contiguous, non-overlapping ranges that cover
|
||
|
// the entire range of edge IDs. This is spelled out more formally below:
|
||
|
//
|
||
|
// 0 <= i < NumChains()
|
||
|
// Chain(i).length > 0, for all i
|
||
|
// Chain(0).start == 0
|
||
|
// Chain(i).start + Chain(i).length == Chain(i+1).start, for i < NumChains()-1
|
||
|
// Chain(i).start + Chain(i).length == NumEdges(), for i == NumChains()-1
|
||
|
Chain(chainID int) Chain
|
||
|
|
||
|
// ChainEdgeReturns the edge at offset "offset" within edge chain "chainID".
|
||
|
// Equivalent to "shape.Edge(shape.Chain(chainID).start + offset)"
|
||
|
// but more efficient.
|
||
|
ChainEdge(chainID, offset int) Edge
|
||
|
|
||
|
// ChainPosition finds the chain containing the given edge, and returns the
|
||
|
// position of that edge as a ChainPosition(chainID, offset) pair.
|
||
|
//
|
||
|
// shape.Chain(pos.chainID).start + pos.offset == edgeID
|
||
|
// shape.Chain(pos.chainID+1).start > edgeID
|
||
|
//
|
||
|
// where pos == shape.ChainPosition(edgeID).
|
||
|
ChainPosition(edgeID int) ChainPosition
|
||
|
|
||
|
// Dimension returns the dimension of the geometry represented by this shape,
|
||
|
// either 0, 1 or 2 for point, polyline and polygon geometry respectively.
|
||
|
//
|
||
|
// 0 - Point geometry. Each point is represented as a degenerate edge.
|
||
|
//
|
||
|
// 1 - Polyline geometry. Polyline edges may be degenerate. A shape may
|
||
|
// represent any number of polylines. Polylines edges may intersect.
|
||
|
//
|
||
|
// 2 - Polygon geometry. Edges should be oriented such that the polygon
|
||
|
// interior is always on the left. In theory the edges may be returned
|
||
|
// in any order, but typically the edges are organized as a collection
|
||
|
// of edge chains where each chain represents one polygon loop.
|
||
|
// Polygons may have degeneracies (e.g., degenerate edges or sibling
|
||
|
// pairs consisting of an edge and its corresponding reversed edge).
|
||
|
// A polygon loop may also be full (containing all points on the
|
||
|
// sphere); by convention this is represented as a chain with no edges.
|
||
|
// (See laxPolygon for details.)
|
||
|
//
|
||
|
// This method allows degenerate geometry of different dimensions
|
||
|
// to be distinguished, e.g. it allows a point to be distinguished from a
|
||
|
// polyline or polygon that has been simplified to a single point.
|
||
|
Dimension() int
|
||
|
|
||
|
// IsEmpty reports whether the Shape contains no points. (Note that the full
|
||
|
// polygon is represented as a chain with zero edges.)
|
||
|
IsEmpty() bool
|
||
|
|
||
|
// IsFull reports whether the Shape contains all points on the sphere.
|
||
|
IsFull() bool
|
||
|
|
||
|
// typeTag returns a value that can be used to identify the type of an
|
||
|
// encoded Shape.
|
||
|
typeTag() typeTag
|
||
|
|
||
|
// We do not support implementations of this interface outside this package.
|
||
|
privateInterface()
|
||
|
}
|
||
|
|
||
|
// defaultShapeIsEmpty reports whether this shape contains no points.
|
||
|
func defaultShapeIsEmpty(s Shape) bool {
|
||
|
return s.NumEdges() == 0 && (s.Dimension() != 2 || s.NumChains() == 0)
|
||
|
}
|
||
|
|
||
|
// defaultShapeIsFull reports whether this shape contains all points on the sphere.
|
||
|
func defaultShapeIsFull(s Shape) bool {
|
||
|
return s.NumEdges() == 0 && s.Dimension() == 2 && s.NumChains() > 0
|
||
|
}
|
||
|
|
||
|
// A minimal check for types that should satisfy the Shape interface.
|
||
|
var (
|
||
|
_ Shape = &Loop{}
|
||
|
_ Shape = &Polygon{}
|
||
|
_ Shape = &Polyline{}
|
||
|
)
|