AdGuardHome/internal/dhcpd/routeradv.go
2025-03-07 13:01:34 +03:00

311 lines
7.9 KiB
Go

package dhcpd
import (
"encoding/binary"
"fmt"
"net"
"slices"
"sync/atomic"
"time"
"github.com/AdguardTeam/golibs/errors"
"github.com/AdguardTeam/golibs/log"
"github.com/AdguardTeam/golibs/netutil"
"golang.org/x/net/icmp"
"golang.org/x/net/ipv6"
)
// raCtx is a context for the Router Advertisement logic.
type raCtx struct {
// raAllowSLAAC is used to determine if the ICMP Router Advertisement
// messages should be sent.
//
// If both raAllowSLAAC and raSLAACOnly are false, the Router Advertisement
// messages aren't sent.
raAllowSLAAC bool
// raSLAACOnly is used to determine if the ICMP Router Advertisement
// messages should set M and O flags, see RFC 4861, section 4.2.
//
// If both raAllowSLAAC and raSLAACOnly are false, the Router Advertisement
// messages aren't sent.
raSLAACOnly bool
// ipAddr is an IP address used within the Source Link-Layer Address option.
// See RFC 4861, section 4.6.1.
ipAddr net.IP
// dnsIPAddr is an IP address used within the DNS Server option.
dnsIPAddr net.IP
// prefixIPAddr is an IP address used within the Prefix Information option.
// See RFC 4861, section 4.6.2.
prefixIPAddr net.IP
// ifaceName is the name of the interface used as a scope of the IP
// addresses.
ifaceName string
// iface is the network interface used to send the ICMPv6 packets.
iface *net.Interface
// packetSendPeriod is the interval between sending the ICMPv6 packets.
packetSendPeriod time.Duration
// conn is the ICMPv6 socket.
conn *icmp.PacketConn
// stop is used to stop the packet sending loop.
stop atomic.Value
}
type icmpv6RA struct {
managedAddressConfiguration bool
otherConfiguration bool
prefix net.IP
prefixLen int
sourceLinkLayerAddress net.HardwareAddr
recursiveDNSServer net.IP
mtu uint32
}
// hwAddrToLinkLayerAddr clones the hardware address and returns it as a byte
// slice suitable for the Source Link-Layer Address option in the ICMPv6
// Router Advertisement packet.
//
// TODO(e.burkov): Check if it's safe to use the original slice.
func hwAddrToLinkLayerAddr(hwa net.HardwareAddr) (lla []byte, err error) {
err = netutil.ValidateMAC(hwa)
if err != nil {
// Don't wrap the error, because it already contains enough
// context.
return nil, err
}
return slices.Clone(hwa), nil
}
// Create an ICMPv6.RouterAdvertisement packet with all necessary options.
// Data scheme:
//
// ICMPv6:
// - type[1]
// - code[1]
// - chksum[2]
// - body (RouterAdvertisement):
// - Cur Hop Limit[1]
// - Flags[1]: MO......
// - Router Lifetime[2]
// - Reachable Time[4]
// - Retrans Timer[4]
// - Option=Prefix Information(3):
// - Type[1]
// - Length * 8bytes[1]
// - Prefix Length[1]
// - Flags[1]: LA......
// - Valid Lifetime[4]
// - Preferred Lifetime[4]
// - Reserved[4]
// - Prefix[16]
// - Option=MTU(5):
// - Type[1]
// - Length * 8bytes[1]
// - Reserved[2]
// - MTU[4]
// - Option=Source link-layer address(1):
// - Link-Layer Address[8/24]
// - Option=Recursive DNS Server(25):
// - Type[1]
// - Length * 8bytes[1]
// - Reserved[2]
// - Lifetime[4]
// - Addresses of IPv6 Recursive DNS Servers[16]
//
// TODO(a.garipov): Replace with an existing implementation from a dependency.
func createICMPv6RAPacket(params icmpv6RA) (data []byte, err error) {
lla, err := hwAddrToLinkLayerAddr(params.sourceLinkLayerAddress)
if err != nil {
return nil, fmt.Errorf("converting source link-layer address: %w", err)
}
// Calculate length of the source link-layer address option. As per RFC
// 4861, section 4.6.1, the length should be in units of 8 octets, including
// the type and length fields.
//
// See https://datatracker.ietf.org/doc/html/rfc4861#section-4.6.1.
srcLLAOptLen := len(lla) + 2
// Make sure the value is rounded up to the nearest multiple of 8.
srcLLAOptLenValue := (srcLLAOptLen + 7) / 8
srcLLAPadLen := srcLLAOptLenValue*8 - srcLLAOptLen
// TODO(a.garipov): Don't use a magic constant here. Refactor the code
// and make all constants named instead of all those comments.
data = make([]byte, 80+srcLLAOptLen+srcLLAPadLen)
i := 0
// ICMPv6:
data[i] = 134 // type
data[i+1] = 0 // code
data[i+2] = 0 // chksum
data[i+3] = 0
i += 4
// RouterAdvertisement:
data[i] = 64 // Cur Hop Limit[1]
i++
data[i] = 0 // Flags[1]: MO......
if params.managedAddressConfiguration {
data[i] |= 0x80
}
if params.otherConfiguration {
data[i] |= 0x40
}
i++
binary.BigEndian.PutUint16(data[i:], 1800) // Router Lifetime[2]
i += 2
binary.BigEndian.PutUint32(data[i:], 0) // Reachable Time[4]
i += 4
binary.BigEndian.PutUint32(data[i:], 0) // Retrans Timer[4]
i += 4
// Option=Prefix Information:
data[i] = 3 // Type
data[i+1] = 4 // Length
i += 2
data[i] = byte(params.prefixLen) // Prefix Length[1]
i++
data[i] = 0xc0 // Flags[1]
i++
binary.BigEndian.PutUint32(data[i:], 3600) // Valid Lifetime[4]
i += 4
binary.BigEndian.PutUint32(data[i:], 3600) // Preferred Lifetime[4]
i += 4
binary.BigEndian.PutUint32(data[i:], 0) // Reserved[4]
i += 4
copy(data[i:], params.prefix[:8]) // Prefix[16]
binary.BigEndian.PutUint32(data[i+8:], 0)
binary.BigEndian.PutUint32(data[i+12:], 0)
i += 16
// Option=MTU:
data[i] = 5 // Type
data[i+1] = 1 // Length
i += 2
binary.BigEndian.PutUint16(data[i:], 0) // Reserved[2]
i += 2
binary.BigEndian.PutUint32(data[i:], params.mtu) // MTU[4]
i += 4
// Option=Source link-layer address:
data[i] = 1 // Type
data[i+1] = byte(srcLLAOptLenValue) // Length
i += 2
copy(data[i:], lla) // Link-Layer Address[8/24]
i += len(lla) + srcLLAPadLen
// Option=Recursive DNS Server:
data[i] = 25 // Type
data[i+1] = 3 // Length
i += 2
binary.BigEndian.PutUint16(data[i:], 0) // Reserved[2]
i += 2
binary.BigEndian.PutUint32(data[i:], 3600) // Lifetime[4]
i += 4
copy(data[i:], params.recursiveDNSServer) // Addresses of IPv6 Recursive DNS Servers[16]
return data, nil
}
// Init initializes RA module.
func (ra *raCtx) Init() (err error) {
ra.stop.Store(0)
ra.conn = nil
if !ra.raAllowSLAAC && !ra.raSLAACOnly {
return nil
}
log.Debug("dhcpv6 ra: source IP address: %s DNS IP address: %s", ra.ipAddr, ra.dnsIPAddr)
params := icmpv6RA{
managedAddressConfiguration: !ra.raSLAACOnly,
otherConfiguration: !ra.raSLAACOnly,
mtu: uint32(ra.iface.MTU),
prefixLen: 64,
recursiveDNSServer: ra.dnsIPAddr,
sourceLinkLayerAddress: ra.iface.HardwareAddr,
}
params.prefix = make([]byte, 16)
copy(params.prefix, ra.prefixIPAddr[:8]) // /64
var data []byte
data, err = createICMPv6RAPacket(params)
if err != nil {
return fmt.Errorf("creating packet: %w", err)
}
ipAndScope := ra.ipAddr.String() + "%" + ra.ifaceName
ra.conn, err = icmp.ListenPacket("ip6:ipv6-icmp", ipAndScope)
if err != nil {
return fmt.Errorf("dhcpv6 ra: icmp.ListenPacket: %w", err)
}
defer func() {
if err != nil {
err = errors.WithDeferred(err, ra.Close())
}
}()
con6 := ra.conn.IPv6PacketConn()
if err = con6.SetHopLimit(255); err != nil {
return fmt.Errorf("dhcpv6 ra: SetHopLimit: %w", err)
}
if err = con6.SetMulticastHopLimit(255); err != nil {
return fmt.Errorf("dhcpv6 ra: SetMulticastHopLimit: %w", err)
}
msg := &ipv6.ControlMessage{
HopLimit: 255,
Src: ra.ipAddr,
IfIndex: ra.iface.Index,
}
addr := &net.UDPAddr{
IP: net.ParseIP("ff02::1"),
}
go func() {
log.Debug("dhcpv6 ra: starting to send periodic RouterAdvertisement packets")
for ra.stop.Load() == 0 {
_, err = con6.WriteTo(data, msg, addr)
if err != nil {
log.Error("dhcpv6 ra: WriteTo: %s", err)
}
time.Sleep(ra.packetSendPeriod)
}
log.Debug("dhcpv6 ra: loop exit")
}()
return nil
}
// Close closes the module.
func (ra *raCtx) Close() (err error) {
log.Debug("dhcpv6 ra: closing")
ra.stop.Store(1)
if ra.conn != nil {
return ra.conn.Close()
}
return nil
}